Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T04:39:42.190Z Has data issue: false hasContentIssue false

Crosslinked SPEEK membranes: Mechanical, thermal, and hydrothermal properties

Published online by Cambridge University Press:  07 June 2012

Hongying Hou
Affiliation:
Laboratoire Chimie Provence (UMR 6264), Centre St Jérôme, Aix-Marseille Univ - CNRS, 13397 Marseille, France
Brunella Maranesi
Affiliation:
Laboratoire Chimie Provence (UMR 6264), Centre St Jérôme, Aix-Marseille Univ - CNRS, 13397 Marseille, France; and Dip. Scienze e Tecnologie Chimiche, Univ Roma Tor Vergata, 00133 Roma, Italy
Jean-François Chailan
Affiliation:
Univ Sud Toulon-Var, MAPIEM (EA 3834), 83402 La Garde, France
Mustapha Khadhraoui
Affiliation:
Laboratoire Chimie Provence (UMR 6264), Centre St Jérôme, Aix-Marseille Univ - CNRS, 13397 Marseille, France
Riccardo Polini
Affiliation:
Dip. Scienze e Tecnologie Chimiche, Univ Roma Tor Vergata, 00133 Roma, Italy
Maria Luisa Di Vona
Affiliation:
Dip. Scienze e Tecnologie Chimiche, Univ Roma Tor Vergata, 00133 Roma, Italy
Philippe Knauth*
Affiliation:
Laboratoire Chimie Provence (UMR 6264), Centre St Jérôme, Aix-Marseille Univ - CNRS, 13397 Marseille, France
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The thermal and mechanical behavior, the water uptake (WU), and water diffusion coefficient of sulfonated poly(ether ether ketone) (SPEEK) membranes annealed at 180 °C for different times were explored by high-resolution thermogravimetric analysis, mechanical tensile tests, dynamic mechanical analysis, and WU measurements. The mechanical and thermal stability increased with the thermal treatment time, i.e., with the degree of crosslinking. The effect of residual casting solvent, dimethyl sulfoxide (DMSO), on the WU within SPEEK was probed. In presence of residual DMSO, crosslinked SPEEK exhibited higher water sorption at low and medium relative humidity (RH), and lower water sorption at high RH. These membranes have properties well adapted to fuel cell applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Higashihara, T., Matsumoto, K., and Ueda, M.: Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50, 5341 (2009).CrossRefGoogle Scholar
2.Jannasch, P.: Fuel cell membrane materials by chemical grafting of aromatic main-chain polymers. Fuel Cells 5, 248 (2005).CrossRefGoogle Scholar
3.Zhang, G., Fu, T., Shao, K., Li, X., Zhao, C., Na, H., and Zhang, H.: Novel sulfonated poly(ether ether ketone ketone)s for direct methanol fuel cells usage: Synthesis, water uptake, methanol diffusion coefficient and proton conductivity. J. Power Sources 189, 875 (2009).CrossRefGoogle Scholar
4.Xing, P.X., Robertson, G.P., Guiver, M.D., Mikhailenko, S.D., Wang, K.P., and Kalituine, S.: Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229, 95 (2004).CrossRefGoogle Scholar
5.Kerres, J., Ullrich, A., Meier, F., and Haring, T.: Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243 (1999).CrossRefGoogle Scholar
6.Zawodzinski, T.A., Springer, T., Davcy, J., Valerie, J., and Gottesfeld, S.: Water transport properties of fuel cell ionomer, in The Electrochemical Society Proceedings of the Symposium on Modeling of Batteries and Fuel Cells, Phoenix, AZ, October 13–18, 1991.Google Scholar
7.Di Vona, M.L., Licoccia, S., and Knauth, P.: Organic–inorganic hybrid membranes based on sulfonated polyaryl–ether–ketones: Correlation between water uptake and electrical conductivity. Solid State Ionics 179, 1161 (2008).CrossRefGoogle Scholar
8.Li, L., Zhang, J., and Wang, Y.: Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J. Membr. Sci. 226, 159 (2003).CrossRefGoogle Scholar
9.Hou, H., Di Vona, M.L., and Knauth, P.: Durability study of sulfonated aromatic polymer electrolyte membrane. ChemSusChem 4, 1526 (2011).CrossRefGoogle Scholar
10.Kusoglu, A., Karlsson, A.M., Santare, M.H., Cleghom, S., and Johnson, W.B.: Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle. J. Power Sources 161, 987 (2006).CrossRefGoogle Scholar
11.Huang, X.Y., Solasi, R., Zou, Y., Feshler, M., Reifsnider, K., Condit, D., Burlatsky, S., and Madden, T.: Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. J. Polym. Sci., Part B: Polym. Phys. 44, 2346 (2006).CrossRefGoogle Scholar
12.Borup, R., Meyers, J., Pivovar, J., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N.: Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904 (2007).CrossRefGoogle ScholarPubMed
13.Mitov, S., Vogel, B., Roduner, E., Zhang, H., Zhu, X., Gogel, V., Jorissen, L., Hein, M., Xing, D., Schonberger, F., and Kerres, J.: Preparation and characterization of stable ionomers and ionomer membranes for fuel cells. Fuel Cells 6, 413 (2006).CrossRefGoogle Scholar
14.Xing, D.M., Yi, B.L., Liu, F.Q., Fu, Y.Z., and Zhang, H.M.: Characterization of sulfonated poly ether ether ketone/polytetrafluoroethylene composite membrane for fuel cell application. Fuel Cells 5, 412 (2005).CrossRefGoogle Scholar
15.Voss, H. and Friedrich, K.: On the wear behaviour of short-fibre-reinforced peek composites. Wear 116, 1 (1987).CrossRefGoogle Scholar
16.Lai, Y.H., Kuo, M.C., Huang, J.C., and Chen, M.: Thermomechanical properties of nanosilica reinforced PEEK composites. Key Eng. Mater. 351, 15 (2007).CrossRefGoogle Scholar
17.Di Vona, M.L., Marani, D., D’Ottavi, C., Trombetta, M., Traversa, E., Beurroies, I., Knauth, P., and Licoccia, S.: A simple new route to covalent organic/inorganic hybrid proton exchange polymeric membranes. Chem. Mater. 18, 69 (2006).CrossRefGoogle Scholar
18.Kerres, J.A.: Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 5, 230 (2005).CrossRefGoogle Scholar
19.Gasa, J.V., Weiss, R.A., and Shaw, M.T.: Ionic crosslinking of ionomer polymer electrolyte membranes using barium cations. J. Membr. Sci. 304, 173 (2007).CrossRefGoogle Scholar
20.Luu, D.X. and Kim, D.: Strontium cross-linked sPEEK proton exchange membranes for fuel cell. Solid State Ionics 192, 627 (2011).CrossRefGoogle Scholar
21.Sgreccia, E., Khadhraoui, M., Bonis, C.D., Licoccia, S., Di Vona, M.L., and Knauth, P.: Mechanical properties of hybrid proton conducting polymer blends based on sulfonated polyetheretherketones. J. Power Sources 178, 667 (2008).CrossRefGoogle Scholar
22.Chang, Y.W., Wang, E., Shin, G., Han, J.E., and Mather, P.T.: Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications. Polym. Adv. Technol. 18, 535 (2007).CrossRefGoogle Scholar
23.Li, H., Zhang, G., Wu, J., Zhao, C., Zhang, Y., Shao, K., Han, M., Lin, H., Zhu, J., and Na, H.: A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells. J. Power Sources 195, 6443 (2010).CrossRefGoogle Scholar
24.Zhou, Z., Dominey, R.N., Rolland, J.P., Maynor, B.W., Pandya, A.A., and Desimone, J.M.: Molded, high surface area polymer electrolyte membranes from cured liquid precursors. J. Am. Chem. Soc. 128, 12963 (2006).CrossRefGoogle ScholarPubMed
25.Kerres, J.A.: Covalent-ionically cross-linked poly(etheretherketone)-basic polysulfone blend ionomer membranes. Fuel Cells 6, 251 (2006).CrossRefGoogle Scholar
26.Wang, J., Zhao, C., Zhang, G., Zhang, Y., Ni, J., Ma, W., and Na, H.: Novel covalent-ionically cross-linked membranes with extremely low water swelling and methanol crossover for direct methanol fuel cell applications. J. Membr. Sci. 363, 112 (2010).CrossRefGoogle Scholar
27.Chen, X., Chen, P., An, Z., Chen, K., and Okamoto, K.: Crosslinked sulfonated poly(arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications. J. Power Sources 196, 1694 (2011).CrossRefGoogle Scholar
28.Chen, S., Zhang, X., Chen, K., Endo, N., Higa, M., Okamoto, K., and Wang, L.: Cross-linked miscible blend membranes of sulfonated poly(arylene ether sulfone) and sulfonated polyimide for polymer electrolyte fuel cell applications. J. Power Sources 196, 9946 (2011).CrossRefGoogle Scholar
29.Knauth, P., Hou, H., Bloch, E., Sgreccia, E., and Di Vona, M.L.: Thermogravimetric analysis of SPEEK membranes: Thermal stability, degree of sulfonation and cross-linking reaction. J. Anal. Appl. Pyrolysis 92, 361 (2011).CrossRefGoogle Scholar
30.Di Vona, M.L., Sgreccia, E., Tamilvanan, M., Khadhraoui, M., Chassigneux, C., and Knauth, P.: High ionic exchange capacity polyphenylsulfone (SPPSU) and polyethersulfone (SPES) cross-linked by annealing treatment: Thermal stability, hydration level and mechanical properties. J. Membr. Sci. 354, 134 (2010).CrossRefGoogle Scholar
31.Marani, D., Di Vona, M.L., Traversa, E., Licoccia, S., Beurroies, I., Lewellyn, P.L., and Knauth, P.: Thermal stability and thermodynamic properties of hybrid proton-conducting polyaryl etherketones. J. Phys. Chem. B 110, 15817 (2006).CrossRefGoogle ScholarPubMed
32.Di Vona, M.L., Sgreccia, E., Licocccia, S., Alberti, G., Tortet, L., and Knauth, P.: Analysis to temperature-promoted and solvent-assisted cross-linking in sulfonated poly(ether ether ketone) (SPEEK) proton-conducting membranes. J. Phys. Chem. B 113, 7507 (2009).CrossRefGoogle ScholarPubMed
33.Weast, R.C.: Handbook of Chemistry and Physics, 61st ed. (CRC Press, Boca Raton, FL, 1981).Google Scholar
34.Pollio, M.L., Kitic, D., and Resnik, S.L.: Research note: A w values of six saturated salt solutions at 25°C. Re-examination for the purpose of maintaining a constant relative humidity in water sorption measurements. Lebensm. Wiss. Technol. 29, 376 (1996).CrossRefGoogle Scholar
35.Knauth, P., Sgreccia, E., Donnadio, A., Casciola, M., and Di Vona, M.L.: Water activity coefficient and proton mobility in hydrated acidic polymers. J. Electrochem. Soc. 158, B159 (2011).CrossRefGoogle Scholar
36.Sgreccia, E., Chailan, J.F., Khadhraoui, M., Di Vona, M.L., and Knauth, P.: Mechanical properties of proton-conducting sulfonated aromatic polymer membranes: Stress-strain tests and dynamical analysis. J. Power Sources 195, 7770 (2010).CrossRefGoogle Scholar
37.Park, H.B., Lee, C.H., Sohn, J.Y., Lee, Y.M., Freeman, B.D., and Kim, H.J.: Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. J. Membr. Sci. 285, 432 (2006).CrossRefGoogle Scholar
38.Alberti, G., Narducci, R., and Sganappa, M.: Effects of hydrothermal/thermal treatments on the water-uptake of nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. J. Power Sources 178, 575 (2008).CrossRefGoogle Scholar
39.Alia, J.M., Edwards, H.G.M., and Kiernan, B.M.: Raman spectroscopy of benzenesulfonic and 4-toluenesulfonic acids dissolved in dimethylsulfoxide. Spectrochim. Acta, Part A 60, 1533 (2004).CrossRefGoogle ScholarPubMed
40.Li, Y.S., Zhao, T.S., and Yang, W.W.: Measurements of water uptake and transport properties in anion-exchange membranes. Int. J. Hydrogen Energy 35, 5656 (2011).CrossRefGoogle Scholar
41.Bennet, C.F.: in TECHNICAL BULLETIN (105B) REACTION SOLVENT DIMETHYL SULFOXIDE, Gaylord Chemical Company, L. L. C.Google Scholar
42.Di Vona, M.L., Sgreccia, E., Licoccia, S., Khadhroui, M., Denoyel, R., and Knauth, P.: Composite proton-conducting hybrid polymers: Water sorption isotherms and mechanical properties of blends of sulfonated PEEK and substituted PPSU. Chem. Mater. 20, 4327 (2008).CrossRefGoogle Scholar
43.Kreuer, K.D., Paddison, S.J., Spohr, E., and Schuster, M.: Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637 (2004).CrossRefGoogle ScholarPubMed