Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T10:20:11.218Z Has data issue: false hasContentIssue false

Critical role and modification of surface states in hematite films for enhancing oxygen evolution activity

Published online by Cambridge University Press:  11 January 2018

Myeongwhun Pyeon
Affiliation:
Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
Tero-Petri Ruoko
Affiliation:
Laboratory of Chemistry and Biotechnology, Tampere University of Technology, Tampere 33101, Finland
Jennifer Leduc
Affiliation:
Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
Yakup Gönüllü
Affiliation:
Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
Meenal Deo
Affiliation:
Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
Nikolai V. Tkachenko
Affiliation:
Laboratory of Chemistry and Biotechnology, Tampere University of Technology, Tampere 33101, Finland
Sanjay Mathur*
Affiliation:
Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hematite films deposited by plasma-enhanced chemical vapor deposition of iron pentacarbonyl [Fe(CO)5] in an oxygen plasma were modified by postdeposition (i) oxygen plasma treatment and (ii) short annealing treatments to reduce the defects and to modify the (sub)surface states and consequently the photoelectrochemical properties. The oxygen plasma treatment resulted in the increase of particle size and augmented surface roughening by densification of grains. Moreover, it induced saturated surface states with reactive oxygen species (O, OH), evident in the X-ray photoelectron spectroscopy (XPS). Under standard illumination (1.5 AM; 100 mW/cm2; 150 W xenon lamp), when compared to the pristine hematite coating (0.696 mA/cm2 at 1.23 V versus RHE and 0.74 Vonset) the oxygen plasma-treated films showed severe deterioration in photocurrent density of 0.035 mA/cm2 and an anodic shift in the onset potential (1.10 Vonset) due to oxygen rich surface. In a second set of experiments, the oxygen plasma-treated hematite films were briefly annealed (10 min at 750 °C) and the signals of Fe 2p and O 1s recovered to higher binding energies, indicating the formation of oxygen vacancies. In addition, a superior photocurrent density value of max. 1.306 mA/cm2 at 1.23 V versus RHE to that of the pristine hematite photoanode with 0.74 Vonset was obtained. Transient absorption spectroscopy further elucidated that the oxygen plasma-induced electron trap states acting as recombination centers that are unfavorable for photoelectrochemical activity. The alteration in Fe:O stoichiometry and thus photocurrent density are corroborated by determination of water oxidation rates in annealed (7.1 s−1) and oxygen plasma treated (2.5 s−1) samples.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Xiaobo Chen

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Ursua, A., Gandia, L.M., and Sanchis, P.: Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 100, 410 (2012).CrossRefGoogle Scholar
Xiang, C., Papadantonakis, K.M., and Lewis, N.S.: Principles and implementations of electrolysis systems for water splitting. Mater. Horiz. 3, 169 (2016).CrossRefGoogle Scholar
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
Grave, D.A., Dotan, H., Levy, Y., Piekner, Y., Scherrer, B., Malviya, K.D., and Rothschild, A.: Heteroepitaxial hematite photoanodes as a model system for solar water splitting. J. Mater. Chem. A 4, 3052 (2016).CrossRefGoogle Scholar
Malviya, K.D., Dotan, H., Shlenkevich, D., Tsyganok, A., Mor, H., and Rothschild, A.: Systematic comparison of different dopants in thin film hematite (α-Fe2O3) photoanodes for solar water splitting. J. Mater. Chem. A 4, 3091 (2016).CrossRefGoogle Scholar
Wang, L., Yang, Y., Zhang, Y., Rui, Q., Zhang, B., Shen, Z., and Bi, Y.: One-dimensional hematite photoanodes with spatially separated Pt and FeOOH nanolayers for efficient solar water splitting. J. Mater. Chem. A 5, 17056 (2017).CrossRefGoogle Scholar
Dias, P., Andrade, L., and Mendes, A.: Hematite-based photoelectrode for solar water splitting with very high photovoltage. Nano Energy 38, 218 (2017).CrossRefGoogle Scholar
Tamirat, A.G., Rick, J., Dubale, A.A., Su, W-N., and Hwang, B-J.: Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz. 1, 243 (2016).CrossRefGoogle ScholarPubMed
Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., and Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477 (2007).CrossRefGoogle Scholar
Kleiman-Shwarsctein, A., Hu, Y-S., Forman, A.J., Stucky, G.D., and McFarland, E.W.: Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900 (2008).CrossRefGoogle Scholar
Hung, W-H., Chien, T-M., and Tseng, C-M.: Enhanced photocatalytic water splitting by plasmonic TiO2–Fe2O3 cocatalyst under visible light irradiation. J. Phys. Chem. C 118, 12676 (2014).CrossRefGoogle Scholar
Warren, S.C., Voitchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hebert, C., Rothschild, A., and Gratzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842 (2013).CrossRefGoogle ScholarPubMed
Lin, Y., Yuan, G., Sheehan, S., Zhou, S., and Wang, D.: Hematite-based solar water splitting: Challenges and opportunities. Energy Environ. Sci. 4, 4862 (2011).CrossRefGoogle Scholar
Peter, L.M., Wijayantha, K.G.U., and Tahir, A.A.: Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes. Faraday Discuss. 155, 309 (2012).CrossRefGoogle ScholarPubMed
Bard, A.J., Fan, F-R.F., Gioda, A.S., Nagasubramanian, G., and White, H.S.: On the role of surface states in semiconductor electrode photoelectrochemical cells. Faraday Discuss. Chem. Soc. 70, 19 (1980).CrossRefGoogle Scholar
Du, C., Zhang, M., Jang, J-W., Liu, Y., Liu, G-Y., and Wang, D.: Observation and alteration of surface states of hematite photoelectrodes. J. Phys. Chem. C 118, 17054 (2014).CrossRefGoogle Scholar
Barroso, M., Mesa, C.A., Pendlebury, S.R., Cowan, A.J., Hisatomi, T., Sivula, K., Grätzel, M., Klug, D.R., and Durrant, J.R.: Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. U. S. A. 109, 15640 (2012).CrossRefGoogle ScholarPubMed
Yang, Y., Forster, M., Ling, Y., Wang, G., Zhai, T., Tong, Y., Cowan, A.J., and Li, Y.: Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem., Int. Ed. 55, 3403 (2016).CrossRefGoogle ScholarPubMed
Liu, Y., Yan, X., Kang, Z., Li, Y., Shen, Y., Sun, Y., Wang, L., and Zhang, Y.: Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 6, 29907 (2016).CrossRefGoogle ScholarPubMed
Le Formal, F., Tetreault, N., Cornuz, M., Moehl, T., Gratzel, M., and Sivula, K.: Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737 (2011).CrossRefGoogle Scholar
Yang, Y., Xie, R., Liu, Y., Li, J., and Li, W.: Effect of surface passivation on photoelectrochemical water splitting performance of WO3 vertical plate-like films. Catalysts 5, 2024 (2015).CrossRefGoogle Scholar
Gui, Q., Xu, Z., Zhang, H., Cheng, C., Zhu, X., Yin, M., Song, Y., Lu, L., Chen, X., and Li, D.: Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation. ACS Appl. Mater. Interfaces 6, 17053 (2014).CrossRefGoogle ScholarPubMed
Singh, A.P., Mettenbörger, A., Golus, P., and Mathur, S.: Photoelectrochemical properties of hematite films grown by plasma enhanced chemical vapor deposition. Int. J. Hydrogen Energy 37, 13983 (2012).CrossRefGoogle Scholar
Wang, M., Pyeon, M., Gonullu, Y., Kaouk, A., Shen, S., Guo, L., and Mathur, S.: Constructing Fe2O3/TiO2 core–shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale 7, 10094 (2015).CrossRefGoogle ScholarPubMed
Mettenbörger, A., Gönüllü, Y., Fischer, T., Heisig, T., Sasinska, A., Maccato, C., Carraro, G., Sada, C., Barreca, D., Mayrhofer, L., Moseler, M., Held, A., and Mathur, S.: Interfacial insight in multi-junction metal oxide photoanodes for water-splitting applications. Nano Energy 19, 415 (2016).CrossRefGoogle Scholar
Badia-Bou, L., Mas-Marza, E., Rodenas, P., Barea, E.M., Fabregat-Santiago, F., Gimenez, S., Peris, E., and Bisquert, J.: Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J. Phys. Chem. C 117, 3826 (2013).CrossRefGoogle Scholar
Le Formal, F., Grätzel, M., and Sivula, K.: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20, 1099 (2010).CrossRefGoogle Scholar
Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432 (2011).CrossRefGoogle Scholar
Zandi, O. and Hamann, T.W.: The potential versus current state of water splitting with hematite. Phys. Chem. Chem. Phys. 17, 22485 (2015).CrossRefGoogle ScholarPubMed
Tamirat, A.G., Su, W-N., Dubale, A.A., Chen, H-M., and Hwang, B-J.: Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode. J. Mater. Chem. A 3, 5949 (2015).CrossRefGoogle Scholar
Iandolo, B., Wickman, B., Zoric, I., and Hellman, A.: The rise of hematite: Origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J. Mater. Chem. A 3, 16896 (2015).CrossRefGoogle Scholar
Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., and McIntyre, N.S.: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564 (2004).CrossRefGoogle Scholar
Yamashita, T. and Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441 (2008).CrossRefGoogle Scholar
Zhu, C., Li, C., Zheng, M., and Delaunay, J-J.: Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 7, 22355 (2015).CrossRefGoogle ScholarPubMed
Wandelt, K.: Photoemission studies of adsorbed oxygen and oxide layers. Surf. Sci. Rep. 2, 1 (1982).CrossRefGoogle Scholar
Hu, Y., Boudoire, F., Hermann-Geppert, I., Bogdanoff, P., Tsekouras, G., Mun, B.S., Fortunato, G., Graetzel, M., and Braun, A.: Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes. J. Phys. Chem. C 120, 3250 (2016).CrossRefGoogle Scholar
Zhang, X., Klaver, P., van Santen, R., van de Sanden, M.C.M., and Bieberle-Hütter, A.: Oxygen evolution at hematite surfaces: The impact of structure and oxygen vacancies on lowering the overpotential. J. Phys. Chem. C 120, 18201 (2016).CrossRefGoogle Scholar
Bora, D.K., Braun, A., Erat, S., Löhnert, R., Ariffin, A.K., Manzke, R., Sivula, K., Graule, T., Grätzel, M., and Constable, E.C.: Evolution of an oxygen near-edge X-ray absorption fine structure transition in the upper hubbard band in α-Fe2O3 upon electrochemical oxidation. J. Phys. Chem. C 115, 5619 (2011).CrossRefGoogle Scholar
Forster, M., Potter, R.J., Ling, Y., Yang, Y., Klug, D.R., Li, Y., and Cowan, A.J.: Oxygen deficient α-Fe2O3 photoelectrodes: A balance between enhanced electrical properties and trap-mediated losses. Chem. Sci. 6, 4009 (2015).CrossRefGoogle Scholar
van Oversteeg, C.H.M., Doan, H.Q., de Groot, F.M.F., and Cuk, T.: In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chem. Soc. Rev. 46, 102 (2017).CrossRefGoogle ScholarPubMed
Shen, S., Zhou, J., Dong, C.L., Hu, Y., Tseng, E.N., Guo, P., Guo, L., and Mao, S.S.: Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting. Sci. Rep. 4, 6627 (2014).CrossRefGoogle ScholarPubMed
Suntivich, J., Hong, W.T., Lee, Y-L., Rondinelli, J.M., Yang, W., Goodenough, J.B., Dabrowski, B., Freeland, J.W., and Shao-Horn, Y.: Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 118, 1856 (2014).CrossRefGoogle Scholar
Fu, Y., Dong, C-L., Zhou, Z., Lee, W-Y., Chen, J., Guo, P., Zhao, L., and Shen, S.: Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: A tradeoff between electronic structure and nanostructure evolution. Phys. Chem. Chem. Phys. 18, 3846 (2016).CrossRefGoogle ScholarPubMed
Crocombette, J.P., Pollak, M., Jollet, F., Thromat, N., and Gautier-Soyer, M.: X-ray-absorption spectroscopy at the Fe L2,3 threshold in iron oxides. Phys. Rev. B 52, 3143 (1995).CrossRefGoogle ScholarPubMed
Laan, G.v.d. and Kirkman, I.W.: The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. J. Phys.: Condens. Matter 4, 4189 (1992).Google Scholar
Jiménez-Villacorta, F., Prieto, C., Huttel, Y., Telling, N.D., and van der Laan, G.: X-ray magnetic circular dichroism study of the blocking process in nanostructured iron–iron oxide core–shell systems. Phys. Rev. B 84, 172404 (2011).CrossRefGoogle Scholar
Pollak, M., Gautier, M., Thromat, N., Gota, S., Mackrodt, W.C., and Saunders, V.R.: An in situ study of the surface phase transitions of α-Fe2O3 by X-ray absorption spectroscopy at the oxygen K edge. Nucl. Instrum. Meth. B 97, 383 (1995).CrossRefGoogle Scholar
Ruoko, T-P., Kaunisto, K., Bärtsch, M., Pohjola, J., Hiltunen, A., Niederberger, M., Tkachenko, N.V., and Lemmetyinen, H.: Subpicosecond to second time-scale charge carrier kinetics in hematite–titania nanocomposite photoanodes. J. Phys. Chem. Lett. 6, 2859 (2015).CrossRefGoogle ScholarPubMed
Barroso, M., Pendlebury, S.R., Cowan, A.J., and Durrant, J.R.: Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chem. Sci. 4, 2724 (2013).CrossRefGoogle Scholar
Pendlebury, S.R., Wang, X., Le Formal, F., Cornuz, M., Kafizas, A., Tilley, S.D., Gratzel, M., and Durrant, J.R.: Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J. Am. Chem. Soc. 136, 9854 (2014).CrossRefGoogle ScholarPubMed
Pendlebury, S.R., Cowan, A.J., Barroso, M., Sivula, K., Ye, J., Gratzel, M., Klug, D.R., Tang, J., and Durrant, J.R.: Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ. Sci. 5, 6304 (2012).CrossRefGoogle Scholar
Khan, S., Azimi, G., Yildiz, B., and Varanasi, K.K.: Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides. Appl. Phys. Lett. 106, 061601 (2015).CrossRefGoogle Scholar
Li, Z., Wang, Y., Kozbial, A., Shenoy, G., Zhou, F., McGinley, R., Ireland, P., Morganstein, B., Kunkel, A., Surwade, S.P., Li, L., and Liu, H.: Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 12, 925 (2013).CrossRefGoogle ScholarPubMed
Supplementary material: File

Pyeon et al. supplementary material

Figures S1-S5

Download Pyeon et al. supplementary material(File)
File 1.3 MB