Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T08:03:55.511Z Has data issue: false hasContentIssue false

A critical review of the effects of fluid dynamics on graphene growth in atmospheric pressure chemical vapor deposition

Published online by Cambridge University Press:  08 March 2018

Fatin Bazilah Fauzi
Affiliation:
Department of Manufacturing and Materials Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 53100, Malaysia
Edhuan Ismail
Affiliation:
Department of Manufacturing and Materials Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 53100, Malaysia
Mohd Hanafi Ani*
Affiliation:
Department of Manufacturing and Materials Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 53100, Malaysia
Syed Noh Syed Abu Bakar
Affiliation:
Department of Mechanical Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur 53100, Malaysia
Mohd Ambri Mohamed
Affiliation:
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, UKM-Bangi 43600, Selangor, Malaysia
Burhanuddin Yeop Majlis
Affiliation:
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, UKM-Bangi 43600, Selangor, Malaysia
Muhamad Faiz Md Din
Affiliation:
Department of Electrical and Electronics Engineering, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
Mohd Asyadi Azam Mohd Abid
Affiliation:
Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTEM), Durian Tunggal 76100, Melaka, Malaysia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Chemical vapor deposition (CVD) of graphene has attracted high interest in the electronics industry due to its potential scalability for large-scale production. However, producing a homogeneous thin-film graphene with minimal defects remains a challenge. Studies of processing parameters, such as gas precursors, flow rates, pressures, temperatures, and substrate types, focus on improving the chemical aspect of the deposition. Despite the many reports on such parameters, studies on fluid dynamic aspects also need to be considered since they are crucial factors in scaling up the system for homogenous deposition. Once the deposition kinetics is thoroughly understood, the next vital step is fluid dynamics optimization to design a large-scale system that could deliver the gas uniformly and ensure maximum deposition rate with the desired property. In this review, the influence of fluid dynamics in graphene CVD process was highlighted. The basics and importance of CVD fluid dynamics was introduced. It is understood that the fluid dynamics of gases can be controlled in two ways: via reactor modification and gas composition. This paper begins first with discussions on horizontal tubular reactor modifications. This is followed by mechanical properties of the reactant gasses especially in terms of dimensionless Reynolds number which provides information on gas flow regime for graphene CVD process at atmospheric pressure. Data from the previous literature provide the Reynolds number for various gas compositions and its relation to graphene quality. It has been revealed that hydrogen has a major influence on the fluid dynamic conditions within the CVD, hence affecting the quality of the graphene produced. Focusing on atmospheric pressure CVD, suggestions for up-scaling into larger CVD reactors while maintaining similar fluid properties were also provided.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Tianyu Liu

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).Google ScholarPubMed
Zhao, P., Kim, S., Chen, X., Einarsson, E., Wang, M., Song, Y., Wang, H., Chiashi, S., Xiang, R., and Maruyama, S.: Equilibrium chemical vapor deposition growth of bernal-stacked bilayer graphene. ACS Nano 8, 1163111638 (2014).Google ScholarPubMed
Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., and Geim, A.K.: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 23962399 (2011).Google ScholarPubMed
Eversole, W.G.: Synthesis of diamond. U.S. Patent No. 3030188, 1962.Google Scholar
Miao, C., Zheng, C., Liang, O., and Xie, Y.: Chemical vapor deposition of graphene. In Physics and Applications of Graphene—Experiments, Mikhailov, S., ed. (InTech, Rijeka, Croatia, 2011); pp. 3754.Google Scholar
Azam, M.A., Zulkapli, N.N., Dorah, N., Raja Seman, R.N.A., Ani, M.H., Sirat, M.S., Ismail, E., Fauzi, F.B., Mohamed, M.A., and Majlis, B.Y.: Review—Critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronics and energy storage devices. ECS J. Solid State Sci. Technol. 6, M3035M3048 (2017).CrossRefGoogle Scholar
Wang, S., Hibino, H., Suzuki, S., and Yamamoto, H.: Atmospheric pressure chemical vapor deposition growth of millimeter-scale single-crystalline graphene on the copper surface with a native oxide layer. Chem. Mater. 28, 48934900 (2016).Google Scholar
Suzuki, S., Kiyosumi, K., Nagamori, T., Tanaka, K., and Yoshimura, M.: Low density growth of graphene by air introduction in atmospheric pressure chemical vapor deposition. e-J. Surf. Sci. Nanotechnol. 13, 404409 (2015).Google Scholar
Yang, M., Sasaki, S., Suzuki, K., and Miura, H.: Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene. Appl. Surf. Sci. 366, 219226 (2016).Google Scholar
Weatherup, R.S., Dlubak, B., and Hofmann, S.: Kinetic control of catalytic CVD for high quality graphene at low temperatures. ACS Nano 6, 999610003 (2012).CrossRefGoogle ScholarPubMed
Addou, R., Dahal, A., Sutter, P., and Batzill, M.: Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition. Appl. Phys. Lett. 100, 21601 (2012).Google Scholar
Yamazaki, Y., Wada, M., Kitamura, M., Katagiri, M., Sakuma, N., Saito, T., Isobayashi, A., Suzuki, M., Sakata, A., Kajita, A., and Sakai, T.: Low-temperature graphene growth originating at crystalline facets of catalytic metal. Appl. Phys. Express 5, 25101 (2012).CrossRefGoogle Scholar
Cushing, G.W., Johánek, V., Navin, J.K., and Harrison, I.: Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J. Phys. Chem. C 119, 47594768 (2015).Google Scholar
Lu, C-C., Jin, C., Lin, Y-C., Huang, C-R., Suenaga, K., and Chiu, P-W.: Characterization of graphene grown on bulk and thin film nickel. Langmuir 27, 1374813753 (2011).CrossRefGoogle ScholarPubMed
Kanzaki, K., Hibino, H., and Makimoto, T.: Graphene layer formation on polycrystalline nickel grown by chemical vapor deposition. Jpn. J. Appl. Phys. 52, 35103 (2013).CrossRefGoogle Scholar
Lahiri, J., Miller, T.S., Ross, A.J., Adamska, L., Oleynik, I.I., and Batzill, M.: Graphene growth and stability at nickel surfaces. New J. Phys. 11, 25001 (2011).CrossRefGoogle Scholar
Odahara, G., Hibino, H., Nakayama, N., Shimbata, T., Oshima, C., Otani, S., Suzuki, M., Yasue, T., and Koshikawa, T.: Macroscopic single-domain graphene growth on polycrystalline nickel surface. Appl. Phys. Express 5, 35501 (2012).Google Scholar
Kozlova, J., Niilisk, A., Alles, H., and Sammelselg, V.: Discontinuity and misorientation of graphene grown on nickel foil: Effect of the substrate crystallographic orientation. Carbon 94, 160173 (2015).CrossRefGoogle Scholar
An, X., Liu, F., Jung, Y.J., and Kar, S.: Large-area synthesis of graphene on palladium and their Raman spectroscopy. J. Phys. Chem. C 116, 1641216420 (2012).CrossRefGoogle Scholar
Dangwal Pandey, A., Krausert, K., Franz, D., Grånäs, E., Shayduk, R., Müller, P., Keller, T.F., Noei, H., Vonk, V., and Stierle, A.: Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy. J. Appl. Phys. 120, 75304 (2016).CrossRefGoogle Scholar
Ping, J. and Fuhrer, M.S.: Carbon impurities on graphene synthesized by chemical vapor deposition on platinum. J. Appl. Phys. 116, 44303 (2014).CrossRefGoogle Scholar
Sun, J., Nam, Y., Lindvall, N., Cole, M.T., Teo, K.B.K., Woo Park, Y., and Yurgens, A.: Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation. Appl. Phys. Lett. 104, 152107 (2014).Google Scholar
Nam, J., Kim, D.C., Yun, H., Shin, D.H., Nam, S., Lee, W.K., Hwang, J.Y., Lee, S.W., Weman, H., and Kim, K.S.: Chemical vapor deposition of graphene on platinum: Growth and substrate interaction. Carbon 111, 733740 (2017).Google Scholar
Choi, J.S., Choi, H., Kim, K-C., Jeong, H.Y., Yu, Y-J., Kim, J.T., Kim, J-S., Shin, J-W., Cho, H., and Choi, C-G.: Facile fabrication of properties-controllable graphene sheet. Sci. Rep. 6, 24525 (2016).Google ScholarPubMed
Sirat, M.S., Ismail, E., Purwanto, H., Mohd Abid, M.A.A., and Ani, M.H.: Growth conditions of graphene grown in chemical vapour deposition (CVD). Sains Malays. 46, 10331038 (2017).CrossRefGoogle Scholar
Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E., Joseph, W., and Lyding, J.W.: Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 45474554 (2011).CrossRefGoogle ScholarPubMed
Hu, B., Ago, H., Ito, Y., Kawahara, K., Tsuji, M., Magome, E., Sumitani, K., Mizuta, N., Ikeda, K.I., and Mizuno, S.: Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD. Carbon 50, 5765 (2012).CrossRefGoogle Scholar
Diaz-Pinto, C., De, D., Hadjiev, V.G., and Peng, H.: Ab-stacked multilayer graphene synthesized via chemical vapor deposition: A characterization by hot carrier transport. ACS Nano 6, 11421148 (2012).CrossRefGoogle ScholarPubMed
Bhaviripudi, S., Jia, X., Dresselhaus, M.S., and Kong, J.: Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 41284133 (2010).CrossRefGoogle ScholarPubMed
Gao, L., Ren, W., Ma, L.P., Zhao, J., Ma, L.P., Chen, Z., and Cheng, H.M.: Efficient growth of high-quality graphene films on Cu foils by ambient pressure chemical vapor deposition. Appl. Phys. Lett. 97, 183109 (2010).Google Scholar
Wu, B., Geng, D., Guo, Y., Huang, L., Xue, Y., Zheng, J., Chen, J., Yu, G., Liu, Y., Jiang, L., and Hu, W.: Equiangular hexagon-shape-controlled synthesis of graphene on copper surface. Adv. Mater. 23, 35223525 (2011).CrossRefGoogle ScholarPubMed
Yu, Q., Jauregui, L.A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei, D., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S-S., and Chen, Y.P.: Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443449 (2011).CrossRefGoogle ScholarPubMed
Cho, J., Gao, L., Tian, J., Cao, H., Wu, W., Yu, Q., Yitamben, E.N., Fisher, B., Guest, J.R., Chen, Y.P., and Guisinger, N.P.: Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing. ACS Nano 5, 36073613 (2011).CrossRefGoogle ScholarPubMed
Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., and Smirnov, S.: Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5, 60696076 (2011).CrossRefGoogle ScholarPubMed
Grosse, K.L., Dorgan, V.E., Estrada, D., Wood, J.D., Vlassiouk, I., Eres, G., Lyding, J.W., King, W.P., and Pop, E.: Direct observation of resistive heating at graphene wrinkles and grain boundaries. Appl. Phys. Lett. 105, 143109 (2014).CrossRefGoogle Scholar
Vlassiouk, I., Smirnov, S., Regmi, M., Surwade, S.P., Srivastava, N., Feenstra, R., Eres, G., Parish, C., Lavrik, N., Datskos, P., Dai, S., and Fulvio, P.: Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 117, 1891918926 (2013).CrossRefGoogle Scholar
Chung, T.F., Shen, T., Cao, H., Jauregui, L.A., Wu, W., Yu, Q., Newell, D., and Chen, Y.P.: Synthetic graphene grown by chemical vapor deposition on copper foils. Int. J. Mod. Phys. B 27, 1341002 (2013).CrossRefGoogle Scholar
Shin, Y.C. and Kong, J.: Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition. Carbon 59, 439447 (2013).CrossRefGoogle Scholar
Yao, Y., Li, Z., Lin, Z., Moon, K.S., Agar, J., and Wong, C.: Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates. J. Phys. Chem. C 115, 52325238 (2011).Google Scholar
Luo, Z., Lu, Y., Singer, D.W., Berck, M.E., Somers, L.A., Goldsmith, B.R., and Johnson, A.T.C.: Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 23, 14411447 (2011).Google Scholar
Robertson, A.W. and Warner, J.H.: Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 11, 11821189 (2011).CrossRefGoogle ScholarPubMed
Ogawa, Y., Hu, B., Orofeo, C.M., Tsuji, M., Ikeda, K., Mizuno, S., Hibino, H., and Ago, H.: Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) films. J. Phys. Chem. Lett. 3, 219226 (2012).CrossRefGoogle Scholar
Orofeo, C.M., Hibino, H., Kawahara, K., Ogawa, Y., Tsuji, M., Ikeda, K.I., Mizuno, S., and Ago, H.: Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50, 21892196 (2012).CrossRefGoogle Scholar
Nguyen, V.L., Shin, B.G., Duong, D.L., Kim, S.T., Perello, D., Lim, Y.J., Yuan, Q.H., Ding, F., Jeong, H.Y., Shin, H.S., Lee, S.M., Chae, S.H., Vu, Q.A., Lee, S.H., and Lee, Y.H.: Seamless stitching of graphene domains on polished copper(111). Foil. Adv. Mater. 27, 13761382 (2015).CrossRefGoogle Scholar
Lenski, D.R. and Fuhrer, M.S.: Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition. J. Appl. Phys. 110, 13720 (2011).CrossRefGoogle Scholar
Yang, F., Liu, Y., Wu, W., Chen, W., Gao, L., and Sun, J.: A facile method to observe graphene growth on copper foil. Nanotechnology 23, 475705 (2012).CrossRefGoogle ScholarPubMed
Wu, W., Yu, Q., Peng, P., Liu, Z., Bao, J., and Pei, S-S.: Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 23, 35603 (2012).CrossRefGoogle ScholarPubMed
Vlassiouk, I., Fulvio, P., Meyer, H., Lavrik, N., Dai, S., Datskos, P., and Smirnov, S.: Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54, 5867 (2013).Google Scholar
Mattevi, C., Kim, H., and Chhowalla, M.: A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 33243334 (2011).CrossRefGoogle Scholar
Wang, W., Peng, Q., Dai, Y., Qian, Z., and Liu, S.: Temperature dependence of Raman spectra of graphene on copper foil substrate. J. Mater. Sci. Mater. Electron. 27, 38883893 (2016).CrossRefGoogle Scholar
Lewis, A.M., Derby, B., and Kinloch, I.A.: Influence of gas phase equilibria on the chemical vapor deposition of graphene. ACS Nano 7, 31043117 (2013).CrossRefGoogle ScholarPubMed
Frank, O., Vejpravova, J., Holy, V., Kavan, L., and Kalbac, M.: Interaction between graphene and copper substrate: The role of lattice orientation. Carbon 68, 440451 (2014).CrossRefGoogle Scholar
Jacob, M.V., Rawat, R.S., Ouyang, B., Bazaka, K., Kumar, D.S., Taguchi, D., Iwamoto, M., Neupane, R., and Varghese, O.K.: Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Lett. 15, 57025708 (2015).CrossRefGoogle ScholarPubMed
Braeuninger-Weimer, P., Brennan, B., Pollard, A.J., and Hofmann, S.: Understanding and controlling Cu-catalyzed graphene nucleation: The role of impurities, roughness, and oxygen scavenging. Chem. Mater. 28, 89058915 (2016).CrossRefGoogle ScholarPubMed
Ismail, E., Sirat, M.S., Hamid, A.M.A., Othman, R., Abid, M.A.A.M., and Ani, M.H.: Synthesis of large-area few-layer graphene by open-flame deposition. Sains Malays. 46, 10111016 (2017).CrossRefGoogle Scholar
Memon, N.K., Tse, S.D., Al-sharab, J.F., Yamaguchi, H., Goncalves, A.B., Kear, B.H., Jaluria, Y., and Andrei, E.Y.: Flame synthesis of graphene films in open environments. Carbon 49, 50645070 (2011).CrossRefGoogle Scholar
Coltrin, M.E., Kee, R.J., and Miller, J.A.: A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor. J. Electrochem. Soc. 131, 425434 (1984).CrossRefGoogle Scholar
Choi, K. and Kim, J-W.: CFD simulation of chemical vapor deposition of silicon carbide in CH3SiCl3–H2 system. Curr. Nanosci. 10, 135137 (2014).CrossRefGoogle Scholar
Jensen, K.F., Einset, E.O., and Fotiadis, D.I.: Flow phenomena in chemical vapor deposition of thin films. Annu. Rev. Fluid Mech. 23, 197232 (1991).CrossRefGoogle Scholar
Cavallotti, C. and Masi, M.: Kinetics of SiHCl3 chemical vapor deposition and fluid dynamic simulations. J. Nanosci. Nanotechnol. 11, 80548060 (2011).CrossRefGoogle ScholarPubMed
Musso, S., Porro, S., Rovere, M., Giorcelli, M., and Tagliaferro, A.: Fluid dynamic analysis of gas flow in a thermal-CVD system designed for growth of carbon nanotubes. J. Cryst. Growth 310, 477483 (2008).CrossRefGoogle Scholar
Reuge, N., Bacsa, R., Serp, P., and Caussat, B.: Chemical vapor synthesis of zinc oxide nanoparticles: Experimental and preliminary modeling studies. J. Phys. Chem. C 113, 1984519852 (2009).CrossRefGoogle Scholar
Li, G., Huang, S-H., and Li, Z.: Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys. Chem. Chem. Phys. 17, 2283222836 (2015).CrossRefGoogle ScholarPubMed
Ohring, M.: Chemical vapor deposition. In Materials Science of Thin Films: Deposition and Structure (Academic Press, San Diego, California, 2002); pp. 277355.CrossRefGoogle Scholar
Ritala, M., Niinisto, J., Krumdieck, S., Chalker, P., Aspinall, H., Pemble, M.E., Gladfelter, W.L., Leese, B., Fischer, R.A., Parala, H., Kanjolia, R., Dupuis, R.D., Alexandrov, S.E., Irvine, S.J.C., Palgrave, R., Parkin, I.P., Jones, A.C., and Hitchman, M.L.: Overview of Chemical Vapour Deposition. In Chemical Vapour Deposition, Jones, A.C. and Hitchman, M.L., eds. (Royal Society of Chemistry, Cambridge, United Kingdom, 2008), pp. 136.Google Scholar
Dirkx, R.R., Spear, K.E.: A morphological study of silicon borides prepared by CVD. In Emergent Process Methods for High-Technology Ceramics, Vol. 17, Davis, R.F., Palmour, H. III, and Porter, R.L., eds. (Springer US, Boston, MA, 1984); pp. 359369.CrossRefGoogle Scholar
Holstein, W.L.: Design and modeling of chemical vapor deposition reactors. Prog. Cryst. Growth Char. 24, 111211 (1992).Google Scholar
Kuczmarski, M.A.: Dimensionless numbers expressed in terms of common CVD process parameters. J. Wide Bandgap Mater. 7, 192212 (2000).CrossRefGoogle Scholar
Thiart, J.J., Hlavacek, V., and Viljoen, H.J.: Simulation of the growth of CVD films. Chem. Eng. Sci. 50, 34933497 (1995).CrossRefGoogle Scholar
Cengel, Y.A. and Cimbala, J.M.: Properties of fluids. In Fluid Mechanics: Fundamentals and Applications (McGraw-Hill, Singapore, 2014); pp. 3773.Google Scholar
Bloem, J.: Nucleation and growth of silicon by CVD. J. Cryst. Growth 50, 581604 (1980).Google Scholar
Manke, C.W.: Analysis of transport processes in vertical cylinder epitaxy reactors. J. Electrochem. Soc. 124, 561569 (1977).CrossRefGoogle Scholar
Ban, V.S.: Chemical processes in vapor deposition of silicon. J. Electrochem. Soc. 122, 1389 (1975).CrossRefGoogle Scholar
Asafa, T.B., Tabet, N., and Said, S.A.M.: Taguchi method–ANN integration for predictive model of intrinsic stress in hydrogenated amorphous silicon film deposited by plasma enhanced chemical vapour deposition. Neurocomputing 106, 8694 (2013).CrossRefGoogle Scholar
Chen, Q.-S., Prasad, V., Zhang, H., and Dudley, M.: Silicon Carbide Crystals — Part II: Process Physics and Modeling. In Crystal Growth Technology, 1st ed., Byrappa, K., Ohachi, T., Michaeli, W., Warlimont, H., and Weber, E., eds. (William Andrew Publishing, Norwich, New York, 2003), pp. 233269.CrossRefGoogle Scholar
Giling, L.J.: Gas flow patterns in horizontal epitaxial reactor cells observed by interference holography. J. Electrochem. Soc. 129, 634 (1982).CrossRefGoogle Scholar
Woods, V., Born, H., Strassburg, M., and Dietz, N.: Real time optical characterization of gas flow dynamics in high-pressure chemical vapor deposition. J. Vac. Sci. Technol., A 22, 1596 (2004).CrossRefGoogle Scholar
Wang, C., Chen, W., Han, C., Wang, G., Tang, B., Tang, C., Wang, Y., Zou, W., Chen, W., Zhang, X-A., Qin, S., Chang, S., and Wang, L.: Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Sci. Rep. 4, 4537 (2015).CrossRefGoogle Scholar
Song, Y., Pan, D., Cheng, Y., Wang, P., Zhao, P., and Wang, H.: Growth of large graphene single crystal inside a restricted chamber by chemical vapor deposition. Carbon 95, 10271032 (2015).CrossRefGoogle Scholar
Chen, C-C., Kuo, C-J., Liao, C-D., Chang, C-F., Tseng, C-A., Liu, C-R., and Chen, Y-T.: Growth of large-area graphene single crystals in confined reaction space with diffusion-driven chemical vapor deposition. Chem. Mater. 27, 62496258 (2015).CrossRefGoogle Scholar
Li, X., Magnuson, C.W., Venugopal, A., Tromp, R.M., Hannon, J.B., Vogel, E.M., Colombo, L., and Ruoff, R.S.: Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 28162819 (2011).CrossRefGoogle ScholarPubMed
Hesjedal, T.: Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Appl. Phys. Lett. 98, 20112014 (2011).CrossRefGoogle Scholar
Rahimi, S., Tao, L., Chowdhury, S.F., Park, S., Jouvray, A., Buttress, S., Rupesinghe, N., Teo, K., and Akinwande, D.: Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 8, 1047110479 (2014).CrossRefGoogle ScholarPubMed
Hanley, H.J.M., Intemann, H., and Mccarty, R.D.: The viscosity and thermal conductivity of dilute gaseous hydrogen from 15 to 5000 K. J. Res. Natl. Inst. Stan. 74A, 3 (1969).Google Scholar
Hanley, H.J.M., Intemann, H., and Mccarty, R.D.: The viscosity and thermal conductivity of dilute gaseous hydrogen from 15 to 5000 K. Measurements 74, 331353 (1969).Google Scholar
Coker, A.K.: Physical properties of liquids and gases. In Ludwig’s Applied Process Design for Chemical and Petrochemical Plants (Elsevier, Boston, Massachusetts, 2007); pp. 103132.CrossRefGoogle Scholar
Themelis, N.: Transport and Chemical Rate Phenomena (Gordon and Breach, Basel, Switzerland, 1995).Google Scholar
Zhang, J., Hu, P., Wang, X., Wang, Z., Liu, D., Yang, B., and Cao, W.: CVD growth of large area and uniform graphene on tilted copper foil for high performance flexible transparent conductive film. J. Mater. Chem. 22, 1828318290 (2012).CrossRefGoogle Scholar