Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T03:20:36.625Z Has data issue: false hasContentIssue false

Creep, fatigue, and fracture behavior of high-entropy alloys

Published online by Cambridge University Press:  10 July 2018

Weidong Li*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
Gang Wang
Affiliation:
Laboratory for Microstructures, Institute of Materials, Shanghai University, Shanghai 200444, China
Shiwei Wu
Affiliation:
Laboratory for Microstructures, Institute of Materials, Shanghai University, Shanghai 200444, China
Peter K. Liaw*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

As high-entropy alloys (HEAs) are being actively explored for next-generation structural materials, gaining a comprehensive understanding of their creep, fatigue, and fracture behaviors is indispensable. These three aspects of mechanical properties are particularly important because (i) creep resistance dictates an alloy’s high-temperature applications; (ii) fatigue failure is the most frequently encountered failure mode in the service life of a material; (iii) fracture is the very last step that a material loses its load-carrying capability. In consideration of their importance in designing HEAs toward applicable structural materials, this article offers a comprehensive review on what has been accomplished so far in these three topics. The sub-topics covered include a comparison of different creep testing methods, creep-parameter extraction, creep mechanism, high-cycle fatigue SN relation, fatigue-crack-growth behavior, fracture toughness, fracture under different loading conditions, and fractography. Directions for future efforts are suggested in the end.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Miracle, D. and Senkov, O.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Senkov, O.N. and Semiatin, S.L.: Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd. 649, 1110 (2015).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Zhang, W., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).CrossRefGoogle Scholar
Schuh, B., Mendez-Martin, F., Völker, B., George, E.P., Clemens, H., Pippan, R., and Hohenwarter, A.: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).CrossRefGoogle Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
Yao, M., Pradeep, K., Tasan, C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Mater. 72, 5 (2014).CrossRefGoogle Scholar
Hsu, C-Y., Juan, C-C., Wang, W-R., Sheu, T-S., Yeh, J-W., and Chen, S-K.: On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater. Sci. Eng., A 528, 3581 (2011).CrossRefGoogle Scholar
Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).CrossRefGoogle Scholar
Senkov, O., Senkova, S., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Zou, Y., Ma, H., and Spolenak, R.: Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 6, 7748 (2015).CrossRefGoogle ScholarPubMed
He, J., Wang, H., Huang, H., Xu, X., Chen, M., Wu, Y., Liu, X., Nieh, T., An, K., and Lu, Z.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
Wu, J-M., Lin, S-J., Yeh, J-W., Chen, S-K., Huang, Y-S., and Chen, H-C.: Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261, 513 (2006).CrossRefGoogle Scholar
Hsu, C-Y., Sheu, T-S., Yeh, J-W., and Chen, S-K.: Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys. Wear 268, 653 (2010).CrossRefGoogle Scholar
Shi, Y.Z., Yang, B., and Liaw, P.K.: Corrosion-resistant high-entropy alloys: A reveiw. Metals 7, 43 (2017).CrossRefGoogle Scholar
Shi, Y.Z., Yang, B., Xie, X., Brechtl, J., Dahmen, K.A., and Liaw, P.K.: Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 119, 33 (2013).CrossRefGoogle Scholar
Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
Tang, Z., Yuan, T., Tsai, C-W., Yeh, J-W., Lundin, C.D., and Liaw, P.K.: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015).CrossRefGoogle Scholar
Chen, P., Lee, C., Wang, S-Y., Seifi, M., Lewandowski, J.J., Dahmen, K.A., Jia, H., Xie, X., Chen, B., Yeh, J-W., Tsai, C-W., Yuan, T., and Liaw, P.K.: Fatigue behavior of high-entropy alloys: A review. Sci. China Technol. Sci. 61, 168 (2017).CrossRefGoogle Scholar
Zhang, H., He, Y., and Pan, Y.: Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scripta Mater. 69, 342 (2013).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).CrossRefGoogle Scholar
Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, C., Uchic, M.D., and Tiley, J.: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).CrossRefGoogle Scholar
Yeh, J.W., Chen, Y.L., Lin, S.J., and Chen, S.K.: High-entropy alloys—A new era of exploitation. Mater. Sci. Forum 560, 1 (2007).CrossRefGoogle Scholar
Gao, M.C., Yeh, J-W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys (Springer, Switzerland, 2016).CrossRefGoogle Scholar
Cao, T., Shang, J., Zhao, J., Cheng, C., Wang, R., and Wang, H.: The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys. Mater. Lett. 164, 344 (2016).CrossRefGoogle Scholar
Tsao, T-K., Yeh, A-C., Kuo, C-M., Kakehi, K., Murakami, H., Yeh, J-W., and Jian, S-R.: The high temperature tensile and creep behaviors of high entropy superalloy. Sci. Rep. 7, 12658 (2017).CrossRefGoogle ScholarPubMed
Zhang, L., Yu, P., Cheng, H., Zhang, H., Diao, H., Shi, Y., Chen, B., Chen, P., Feng, R., Bai, J., Jing, Q., Ma, M., Liaw, P.K., Li, G., and Liu, R.: Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 47, 5871 (2016).CrossRefGoogle Scholar
Jiao, Z-M., Ma, S-G., Yuan, G-Z., Wang, Z-H., Yang, H-J., and Qiao, J-W.: Plastic deformation of Al0.3CoCrFeNi and AlCoCrFeNi high-entropy alloys under nanoindentation. J. Mater. Eng. Perform. 24, 3077 (2015).CrossRefGoogle Scholar
Lee, D-H., Seok, M-Y., Zhao, Y., Choi, I-C., He, J., Lu, Z., Suh, J-Y., Ramamurty, U., Kawasaki, M., Langdon, T.G., and Jang, J-i.: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).CrossRefGoogle Scholar
Ma, Y., Peng, G.J., Wen, D.H., and Zhang, T.H.: Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng., A 621, 111 (2015).CrossRefGoogle Scholar
Ma, Y., Feng, Y.H., Debela, T.T., Peng, G.J., and Zhang, T.H.: Nanoindentation study on the creep characteristics of high-entropy alloy films: Fcc versus bcc structures. Int. J. Refract. Met. Hard Mater. 54, 395 (2016).CrossRefGoogle Scholar
Seifi, M., Li, D., Yong, Z., Liaw, P.K., and Lewandowski, J.J.: Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM 67, 2288 (2015).CrossRefGoogle Scholar
Thurston, K.V.S., Gludovatz, B., Hohenwarter, A., Laplanche, G., George, E.P., and Ritchie, R.O.: Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics 88, 65 (2017).CrossRefGoogle Scholar
Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, 2017).CrossRefGoogle Scholar
Dieter, G.E. and Bacon, D.J.: Mechanical Metallurgy (McGraw-Hill, Singapore, 1988).Google Scholar
Caillard, D. and Martin, J-L.: Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, U.K., 2003).Google Scholar
Somekawa, H. and Schuh, C.A.: Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys. Acta Mater. 59, 7554 (2011).CrossRefGoogle Scholar
Howes, M.A.: Additional Thermal Fatigue Data on Nickel and Cobalt-base Superalloys (NASA Report, Clevaland, OH, 1973).Google Scholar
Ohtomo, A. and Saiga, Y.: Directional solidification of Rene 80. Trans. Jpn. Inst. Met. 17, 323 (1976).Google Scholar
Rouault-Rogez, H., Dupeux, M., and Ignat, M.: High temperature tensile creep of CMSX-2 nickel base superalloy single crystals. Acta Metall. Mater. 42, 3137 (1994).CrossRefGoogle Scholar
Choi, I-C., Yoo, B-G., Kim, Y-J., Seok, M-Y., Wang, Y., and Jang, J-i.: Estimating the stress exponent of nanocrystalline nickel: Sharp versus spherical indentation. Scripta Mater. 65, 300 (2011).CrossRefGoogle Scholar
Wang, C.L., Lai, Y.H., Huang, J.C., and Nieh, T.G.: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scripta Mater. 62, 175 (2010).CrossRefGoogle Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1987).Google Scholar
Conrad, H.: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).CrossRefGoogle Scholar
Hans, C.: Plastic deformation kinetics in nanocrystalline FCC metals based on the pile-up of dislocations. Nanotechnology 18, 325701 (2007).Google Scholar
Frost, H.J. and Ashby, M.F.: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, U.K., 1982).Google Scholar
Dean, J., Bradbury, A., Aldrich-Smith, G., and Clyne, T.W.: A procedure for extracting primary and secondary creep parameters from nanoindentation data. Mech. Mater. 65, 124 (2013).CrossRefGoogle Scholar
Dorner, D., Röller, K., Skrotzki, B., Stöckhert, B., and Eggeler, G.: Creep of a TiAl alloy: A comparison of indentation and tensile testing. Mater. Sci. Eng., A 357, 346 (2003).CrossRefGoogle Scholar
Phani, P.S. and Oliver, W.C.: A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum. Acta Mater. 111, 31 (2016).CrossRefGoogle Scholar
Su, C., Herbert, E.G., Sohn, S., LaManna, J.A., Oliver, W.C., and Pharr, G.M.: Measurement of power-law creep parameters by instrumented indentation methods. J. Mech. Phys. Solid. 61, 517 (2013).CrossRefGoogle Scholar
Suresh, S.: Fatigue of Materials (Cambridge University Press, Cambridge, U.K., 1998).CrossRefGoogle Scholar
ASTM E647-15e1: Standard Test Method for Measurement of Fatigue Crack Growth Rates (ASTM International, West Conshohocken, PA, 2015).Google Scholar
ASTM E399-17: Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials (ASTM International, West Conshohocken, PA, 2017).Google Scholar
ASTM E1820-17: Standard Test Method for Measurement of Fracture Toughness (ASTM International, West Conshohocken, PA, 2017).Google Scholar
Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).CrossRefGoogle ScholarPubMed
Ritchie, R.O. and Knott, J.F.: Mechanisms of fatigue crack growth in low alloy steel. Acta Metall. 21, 639 (1973).CrossRefGoogle Scholar
El-Shabasy, A.B. and Lewandowski, J.J.: Effects of load ratio, R, and test temperature on fatigue crack growth of fully pearlitic eutectoid steel (fatigue crack growth of pearlitic steel). Int. J. Fatig. 26, 305 (2004).CrossRefGoogle Scholar
Xiao, L., Chen, D.L., and Chaturvedi, M.C.: Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 °C. Mater. Sci. Eng., A 428, 1 (2006).CrossRefGoogle Scholar
Gilbert, C.J., Ritchie, R.O., and Johnson, W.L.: Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997).CrossRefGoogle Scholar
Roy, U., Roy, H., Daoud, H., Glatzel, U., and Ray, K.K.: Fracture toughness and fracture micromechanism in a cast AlCoCrCuFeNi high entropy alloy system. Mater. Lett. 132, 186 (2014).CrossRefGoogle Scholar
Mohanty, S., Maity, T.N., Mukhopadhyay, S., Sarkar, S., Gurao, N.P., Bhowmick, S., and Biswas, K.: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).CrossRefGoogle Scholar
Zhang, A., Han, J., Meng, J., Su, B., and Li, P.: Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 181, 82 (2016).CrossRefGoogle Scholar
Zaddach, A.J., Scattergood, R.O., and Koch, C.C.: Tensile properties of low-stacking fault energy high-entropy alloys. Mater. Sci. Eng., A 636, 373 (2015).CrossRefGoogle Scholar
Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).CrossRefGoogle Scholar
Zhao, Y., Lee, D-H., Seok, M-Y., Lee, J-A., Phaniraj, M.P., Suh, J-Y., Ha, H-Y., Kim, J-Y., Ramamurty, U., and Jang, J-i.: Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scripta Mater. 135, 54 (2017).CrossRefGoogle Scholar
Luo, H., Li, Z., and Raabe, D.: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).CrossRefGoogle ScholarPubMed
He, J.Y., Zhu, C., Zhou, D.Q., Liu, W.H., Nieh, T.G., and Lu, Z.P.: Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics 55, 9 (2014).CrossRefGoogle Scholar
Joseph, J., Stanford, N., Hodgson, P., and Fabijanic, D.M.: Tension/compression asymmetry in additive manufactured face centered cubic high entropy alloy. Scripta Mater. 129, 30 (2017).CrossRefGoogle Scholar
Ma, S.G., Zhang, S.F., Qiao, J.W., Wang, Z.H., Gao, M.C., Jiao, Z.M., Yang, H.J., and Zhang, Y.: Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics 54, 104 (2014).CrossRefGoogle Scholar
Wu, Y.D., Cai, Y.H., Wang, T., Si, J.J., Zhu, J., Wang, Y.D., and Hui, X.D.: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277 (2014).CrossRefGoogle Scholar
Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., and Lu, Z.: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).CrossRefGoogle ScholarPubMed
Sheikh, S., Shafeie, S., Hu, Q., Ahlström, J., Persson, C., Veselý, J., Zýka, J., Klement, U., and Guo, S.: Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120, 164902 (2016).CrossRefGoogle Scholar
Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).CrossRefGoogle Scholar
Rao, Z.Y., Wang, X., Zhu, J., Chen, X.H., Wang, L., Si, J.J., Wu, Y.D., and Hui, X.D.: Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties. Intermetallics 77, 23 (2016).CrossRefGoogle Scholar
Joseph, J., Stanford, N., Hodgson, P., and Fabijanic, D.M.: Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J. Alloys Compd. 726, 885 (2017).CrossRefGoogle Scholar
Ghassemali, E., Sonkusare, R., Biswas, K., and Gurao, N.P.: In-situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. J. Alloys Compd. 710, 539 (2017).CrossRefGoogle Scholar
Tang, Z., Senkov, O.N., Parish, C.M., Zhang, C., Zhang, F., Santodonato, L.J., Wang, G., Zhao, G., Yang, F., and Liaw, P.K.: Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647, 229 (2015).CrossRefGoogle Scholar
Lu, Y., Gao, X., Jiang, L., Chen, Z., Wang, T., Jie, J., Kang, H., Zhang, Y., Guo, S., Ruan, H., Zhao, Y., Cao, Z., and Li, T.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).CrossRefGoogle Scholar
Maiti, S. and Steurer, W.: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).CrossRefGoogle Scholar
He, F., Wang, Z., Cheng, P., Wang, Q., Li, J., Dang, Y., Wang, J., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).CrossRefGoogle Scholar
Fujieda, T., Shiratori, H., Kuwabara, K., Kato, T., Yamanaka, K., Koizumi, Y., and Chiba, A.: First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Mater. Lett. 159, 12 (2015).CrossRefGoogle Scholar
Xia, S.Q., Gao, M.C., and Zhang, Y.: Abnormal temperature dependence of impact toughness in AlxCoCrFeNi system high entropy alloys. Mater. Chem. Phys. 210, 213 (2017).CrossRefGoogle Scholar
Li, D. and Zhang, Y.: The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24 (2016).CrossRefGoogle Scholar
Li, Z., Zhao, S., Diao, H., Liaw, P.K., and Meyers, M.A.: High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. Sci. Rep. 7, 42742 (2017).CrossRefGoogle ScholarPubMed
Ma, S.G., Jiao, Z.M., Qiao, J.W., Yang, H.J., Zhang, Y., and Wang, Z.H.: Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy. Mater. Sci. Eng., A 649, 35 (2016).CrossRefGoogle Scholar
Jiao, Z.M., Ma, S.G., Chu, M.Y., Yang, H.J., Wang, Z.H., Zhang, Y., and Qiao, J.W.: Superior mechanical properties of AlCoCrFeNiTix high-entropy alloys upon dynamic loading. J. Mater. Eng. Perform. 25, 451 (2016).CrossRefGoogle Scholar
Zhang, Z., Zhang, H., Tang, Y., Zhu, L.a., Ye, Y., Li, S., and Bai, S.: Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53. Mater. Des. 133, 435 (2017).CrossRefGoogle Scholar
Brown, W.F., Ho, C.Y., and Mindlin, H.: Aerospace Structural Metals Handbook (CINDSA-USAF CRDA Handbooks Operation, Purdue University, Lafayette, New York, 1979).Google Scholar
ASM International Handbook Committee: Metals Handbook: Properties and Selection (ASM International, Novelty, Ohio, 1990).Google Scholar
Wang, G.Y., Liaw, P.K., Yokoyama, Y., Inoue, A., and Liu, C.T.: Fatigue behavior of Zr-based bulk-metallic glasses. Mater. Sci. Eng., A 494, 314 (2008).CrossRefGoogle Scholar
Tsay, L.W., Liu, Y.C., Young, M.C., and Lin, D.Y.: Fatigue crack growth of AISI 304 stainless steel welds in air and hydrogen. Mater. Sci. Eng., A 374, 204 (2004).CrossRefGoogle Scholar
Sarrazin-Baudoux, C., Petit, J., and Amzallag, C.: Near-threshold Fatigue Crack Propagation in Austenitic Stainless Steels (ECF14, Cracow, Poland, 2002).Google Scholar
Ritchie, R.O.: Near-threshold fatigue crack propagation in ultra-high strength steel: Influence of load ratio and cyclic strength. J. Eng. Mater. Technol. 99, 195 (1977).CrossRefGoogle Scholar
Niendorf, T., Rubitschek, F., Maier, H.J., Niendorf, J., Richard, H.A., and Frehn, A.: Fatigue crack growth—Microstructure relationships in a high-manganese austenitic TWIP steel. Mater. Sci. Eng., A 527, 2412 (2010).CrossRefGoogle Scholar
Ma, P., Qian, L., Meng, J., Liu, S., and Zhang, F.: Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng., A 605, 160 (2014).CrossRefGoogle Scholar
Boyce, B.L. and Ritchie, R.O.: Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V. Eng. Fract. Mech. 68, 129 (2001).CrossRefGoogle Scholar
Chen, S.Y., Li, W.D., Xie, X., Brechtl, J., Chen, B.L., Li, P.Z., Zhao, G.F., Yang, F.Q., Qiao, J.W., Dahmen, K.A., and Liaw, P.K.: Nanoscale serration and creep characteristics of Al0.5CoCrCuFeNi high-entropy alloys. J. Alloys Compd., 752, 464 (2018).CrossRefGoogle Scholar
Li, W.D., Liaw, P.K., and Gao, Y.F.: Fracture resistance of high entropy alloys: A reviw. Intermetallics, 99, 69 (2018).Google Scholar