Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:46:16.278Z Has data issue: false hasContentIssue false

Crack Profiles in Applied Moment Double Cantilever Beam Tests

Published online by Cambridge University Press:  31 January 2011

C. H. Hsueh
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 7831–6068
E. Y. Sun
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 7831–6068
P. F. Becher
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 7831–6068
K. P. Plucknett
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 7831–6068
Get access

Abstract

In situ observations of crack propagation in an applied moment double cantilever beam specimen were used previously to obtain the R-curve behavior of ceramic composites. To predict the R-curve using constitutive models, knowledge of the crack profile is required to derive the bridging stress distribution along the crack length and to analyze the toughening effect. To predict the crack profile in an applied moment double cantilever beam test, both the deformation of the crack surface due to the bending moment and the movement of the crack surface due to the rigid body motion of the loading fixture need to be considered. The analytical solution for the crack profile is derived in the present study. The predicted crack profiles agree well with experimental measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lawn, B. R., Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, England, 1993), p. 25.CrossRefGoogle Scholar
2.Mostovoy, S., Crosely, P. B., and Ripling, E. J., J. Mater. 2, 661 (1967).Google Scholar
3.Kies, J. A. and Clark, A. B. J., Proceedings of the Second International Conference on Fracture, edited by Pratt, P. L. (Chapman & Hall, London, U.K. 1969), p. 483.Google Scholar
4.Evans, A. G., J. Mater. Sci. 7, 1137 (1972).CrossRefGoogle Scholar
5.McKinney, K. R. and Smith, H. L., J. Am. Ceram. Soc. 56, 30 (1973).CrossRefGoogle Scholar
6.Freiman, S. W., Mulville, D. R., and Mast, P. W., J. Mater. Sci. 8, 1527 (1973).CrossRefGoogle Scholar
7.Evans, A. G. and McMeeking, R. M., Acta Metall. 34, 2435 (1986).CrossRefGoogle Scholar
8.Hirosaki, N., Akimune, Y., and Mitomo, M., J. Am. Ceram. Soc. 77, 1093 (1994).CrossRefGoogle Scholar
9.Jenkins, M. G., Kobayashi, A. S., White, K. W., and Bradt, R. C., J. Am. Ceram. Soc. 70, 393 (1987).CrossRefGoogle Scholar
10.Becher, P. F., Hsueh, C. H., Angelini, P., and Tiegs, T. N., J. Am. Ceram. Soc. 71, 1050 (1988).CrossRefGoogle Scholar
11.Krause, R. F., Fuller, E. R., and Rhodes, J. F., J. Am. Ceram. Soc. 73, 559 (1990).CrossRefGoogle Scholar
12.Vekinis, G., Ashby, M. F., and Beaumont, P. W. R., Acta Metall. Mater. 38, 1151 (1990).CrossRefGoogle Scholar
13.Homeny, J. and Vaughn, W. L., J. Am. Ceram. Soc. 73, 2060 (1990).CrossRefGoogle Scholar
14.Ohji, T., Hirao, K., and Kanzaki, S., J. Am. Ceram. Soc. 78, 3125 (1995).CrossRefGoogle Scholar
15.Becher, P. F., Hsueh, C. H., Alexander, K. B., and Sun, E. Y., J. Am. Ceram. Soc. 79, 298 (1996).CrossRefGoogle Scholar
16.Sun, E. Y., Hsueh, C. H., and Becher, P. F., in Fracture–Instability Dynamics, Scaling and Ductile/Brittle Behavior, edited by Selinger, R. L. B., Mecholsky, J. J., Carlsson, A. E., and Fuller, E. R., Jr. (Mater. Res. Soc. Symp. Proc. 409, Pittsburgh, PA, 1996), p. 223.Google Scholar
17.Sneddon, I. N. and Lowengrub, M., Crack Problems in the Classical Theory of Elasticity (John Wiley, New York, 1969), p. 27.Google Scholar
18.Marshall, D. B. and Cox, B. N., Acta. Metall. 35, 2607 (1987).CrossRefGoogle Scholar
19.Hsueh, C. H. and Becher, P. F., Compos. Eng. 1, 129 (1991).CrossRefGoogle Scholar
20.Timoshenko, S. P., Strength of Materials, Part I: Elementary Theory and Problems (D. Van Nostrand Company, Inc., Princeton, NJ, 1955), p. 153.Google Scholar
21.Timoshenko, S. P. and Goddier, J. N., Theory of Elasticity (McGraw-Hill, New York, 1951), pp. 36, 41.Google Scholar
22.O'Donnell, W. J., J. Appl. Mech. 27, 461 (1960).CrossRefGoogle Scholar
23.Plucknett, K. P., Becher, P. F., and Alexander, K. B., J. Microscopy 185, 206 (1997).CrossRefGoogle Scholar