Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T06:03:13.122Z Has data issue: true hasContentIssue false

Corrosion and related mechanical properties of bulk metallic glasses

Published online by Cambridge University Press:  03 March 2011

John R. Scully
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745
A. Gebert
Affiliation:
Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
Joe H. Payer*
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7204
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The review of corrosion performance of a number of alloy systems documents several metallic glasses with corrosion resistance superior to that of crystalline metals. In other cases, the metallic glasses do not have superior corrosion resistance. The nature of corrosion resistance of the metallic glasses is often directly related to the development of a passive film (protective layer) on the reactive alloy substrate, increased durability of the passive film, or enhanced resistance to localized corrosion where the passive film is broken or damaged. Potential mechanical/environmental degradation processes include stress-corrosion cracking, corrosion fatigue, various forms of hydrogen damage, wear, and abrasion. The availability of bulk metallic glasses in significant three-dimensional sizes will stimulate important work in these areas that will enhance the fundamental understanding of the corrosion behavior and mechanical interactions and develop design guidelines and materials properties database for designers and engineers.

Type
Reviews
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Scully, J.R. and Lucente, A.: Corrosion of amorphous metals. American Society of Metals 13B, 476 (2005).Google Scholar
2Duwez, P.: Structure and properties of alloys rapidly quenched from the liquid state. ASM Trans. Quarterly 60, 606 (1967).Google Scholar
3Kim, Y.H., Inoue, A., and Masumoto, T.: Ultrahigh tensile strengths of Al88Y2Ni9M1 (M = Mn or Fe) amorphous alloys containing finely dispersed fcc-Al Particles. Mater. Trans., JIM 31, 747 (1990).Google Scholar
4Chen, H.S.: Metallic glasses update, in Micromechanics of Advanced Materials: A Symposium in Honor of Professor James Li’s 70th Birthday, edited by Chu, S.N.G., Liaw, P.K., Arsenault, R.J., Sadananda, K., Chan, K.S., Gerberich, W.W., Chau, C.C. and Kung, T.M. (The Minerals, Metals and Materials Society, Warrendale, PA, 1995), pp. 295300.Google Scholar
5Inoue, A.: Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater. Sci. Eng., A 375–377, 16 (2004).Google Scholar
6Johnson, W.L.: Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Mater. Sci. Forum 225–227, 35 (1996).CrossRefGoogle Scholar
7Inoue, A., Ohtera, K., and Masumoto, T.: New amorphous Al–Y, Al–La and Al–Ce alloys prepared by melt spinning. Jpn. J. Appl. Phys. 27, L.736 (1988).CrossRefGoogle Scholar
8Gebert, A., Mudali, U.K., Eckert, J., and Schultz, L.: Electrochemical reactivity of zirconium-based bulk metallic glasses. (Mater. Res. Soc. Symp. Proc. 806,Warrendale, PA, 2004), p. 369.CrossRefGoogle Scholar
9Pang, S., Zhang, T., Asami, K., and Inoue, A.: Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance. Corros. Sci. 44, 1847 (2002).CrossRefGoogle Scholar
10Pang, S., Zhang, T., Asami, K., and Inoue, A.: Bulk glassy Ni(Co–)Nb–Ti–Zr alloys with high corrosion resistance and high strength. Mater. Sci. Eng., A 375–377, 368 (2004).Google Scholar
11Gebert, A., Buchholz, K., El-Aziz, A.M., and Eckert, J.: Hot water corrosion behaviour of Zr–Al–Cu–Ni bulk metallic glass. Mater. Sci. Eng., A 316, 60 (2001).Google Scholar
12Gebert, A., Wolff, U., John, A., and Eckert, J.: Corrosion behaviour of Mg65Y10Cu25 metallic glass. Scripta Mater. 43, 279 (2000).CrossRefGoogle Scholar
13Asami, K., Qin, C.L., Zhang, T., and Inoue, A.: Effect of additional elements on the corrosion behavior of a Cu–Zr–Ti bulk metallic glass. Mater. Sci. Eng., A 375–377, 235 (2004).Google Scholar
14Sweitzer, J.E., Scully, J.R., Bley, R.A., and Hsu, J.W.P.: Nanocrystalline Al87Ni8.7Y4.3 and Al90Fe5Gd5 alloys that retain the localized corrosion resistance of the amorphous state. Electrochem. Solid-State Lett. 2, 267 (1999).Google Scholar
15Schroeder, V. and Ritchie, R.O.: Stress-corrosion fatigue-crack growth in a Zr-based bulk amorphous metal. Acta Mater. 54, 1785 (2006).Google Scholar
16Naka, M., Hashimoto, K., and Masumoto, T.: Corrosion resistance of amorphous iron alloys containing chromium. J. Jpn. Inst. Metals 38, 835 (1974).Google Scholar
17Naka, M., Hashimoto, K., and Masumoto, T.: High corrosion resistance of chromium-bearing amorphous iron alloys in neutral and acidic solutions containing chloride. Corrosion 32, 146 (1976).CrossRefGoogle Scholar
18Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J., and Schultz, L.: Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng., A 267, 294 (1999).Google Scholar
19Lohrengel, M.M.: Thin anodic oxide layers on aluminium and other valve metals: High-field regime. Mater. Sci. Eng. R11, 243 (1993).Google Scholar
20Mudali, U.K., Scudino, S., Kühn, U., Eckert, J., and Gebert, A.: Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acids. Scripta Mater. 50, 1379 (1994).Google Scholar
21Köster, U., Zander, D., Triwikantoro, , Rüdiger, A., and Jastrow, L.: Environmental properties of Zr-based metallic glasses and nanocrystalline alloys. Scripta Mater. 44, 1649 (2001).Google Scholar
22Dhawan, A., Raetzke, K., Faupel, F., and Sharma, S.: Study of oxidation behaviour of Zr-based bulk amorphous alloy Zr65Cu17.5Ni10Al7.5 by thermogravimetric analyser. Mater. Sci. 24, 281 (2001).Google Scholar
23Hiromoto, S., Tsai, A.P., Sumita, M., and Hanawa, T.: Corrosion behaviour of Zr65Al7.5Ni10Cu17.5 amorphous alloy for biomedical use. Mater. Trans., JIM 42, 656 (2001).CrossRefGoogle Scholar
24Mudali, U.K., Baunack, S., Eckert, J., Schultz, L., and Gebert, A.: Pitting corrosion of bulk glass-forming zirconium-based alloys. J. Alloys Compd. 377, 290 (2004).Google Scholar
25Peter, W.H., Buchanan, R.A., Liu, C.T., Liaw, P.K., Morrison, M.L., Horton, J.A., Carmichael, C.A., and Wright, J.L.: Localized corrosion behaviour of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 (2002).CrossRefGoogle Scholar
26Schroeder, V., Gilbert, C.J., and Ritchie, R.O.: Comparison of the corrosion behaviour of a bulk amorphous metal, Zr41.2Ti13.8Ni10Cu12.5Be22.5, with its crystallized form. Scripta Mater. 38, 1481 (1998).Google Scholar
27Morrison, M.L., Buchanan, R.A., Peker, A., Peter, W.H., Horton, J.A., and Liaw, P.K.: Cyclic anodic polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 12, 1177 (2004).CrossRefGoogle Scholar
28Gebert, A., Eckert, J., and Schultz, L.: Effect of oxygen on the phase formation and thermal stability of slowly cooled Zr65Al7.5Ni10Cu17.5 metallic glass. Acta Mater. 46, 5475 (1998).Google Scholar
29Raju, V.R., Kühn, U., Wolff, U., Schneider, F., Eckert, J., Reiche, R., and Gebert, A.: Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater. Lett. 57, 173 (2002).Google Scholar
30Pang, S., Zhang, T., Kimura, H., Asami, K., and Inoue, A.: Corrosion behaviour of Zr–(Nb)–Al–Ni–Cu glassy alloys. Mater. Trans., JIM 41, 1490 (2000).CrossRefGoogle Scholar
31Gebert, A., Kuehn, U., Baunack, S., Mattern, N., and Schultz, L.: Pitting corrosion of zirconium-based bulk glass-matrix composites. Mater. Sci. Eng., A 415, 242 (2006).CrossRefGoogle Scholar
32Mattern, N. and Gebert, A.: Hydrogenation of Zr60Ti2Cu20Al10Ni8 bulk metallic glass. Appl. Phys. Lett. 83, 1134 (2003).Google Scholar
33Gebert, A., Ismail, N., Wolff, U., Uhlemann, M., Eckert, J., and Schultz, L.: Effects of electrochemical hydrogenation of Zr-based alloys with high glass-forming ability. Intermetallics 10, 1207 (2002).Google Scholar
34Eliaz, N., Eliezer, D., Abramov, E., Zander, D., and Köster, U.: Hydrogen evolution from Zr-based amorphous and quasicrystalline alloys. J. Alloys Compd. 305, 272 (2000).CrossRefGoogle Scholar
35Ismail, N., Uhlemann, M., Gebert, A., and Eckert, J.: Hydrogenation and its effect on the crystallisation behaviour of Zr55Cu30Al10Ni5 metallic glass. J. Alloys Compd. 298, 146 (2000).Google Scholar
36Ismail, N., Gebert, A., Uhlemann, M., Eckert, J., and Schultz, L.: Effect of hydrogen on Zr65Cu17.5Al7.5Ni10 metallic glass. J. Alloys Compd. 314, 170 (2001).Google Scholar
37Shan, G.B., Wang, Y.W., Chu, W.Y., Li, J.X., and Hui, X.D.: Hydrogen damage and delayed fracture in bulk metallic glass. Corros. Sci. 47, 2731 (2005).CrossRefGoogle Scholar
38Hasegawa, M., Kotani, K., Yamaura, S., Kato, H., Kodama, I., and Inoue, A.: Hydrogen-induced internal friction of Zr-based bulk glassy alloys in a rod shape above 90 K. J. Alloys Compd. 365, 221 (2004).Google Scholar
39Suh, D. and Dauskardt, R.H.: Hydrogen effects on the mechanical and fracture behavior of a Zr–Ti–Ni–Cu–Be bulk metallic glass. Scripta Mater. 42, 233 (2000).CrossRefGoogle Scholar
40Schroeder, V., Gilbert, C.J., and Ritchie, R.O.: Effect of aqueous environment on fatigue-crack propagation behaviour in a Zr-based bulk amorphous metal. Scripta Mater. 40, 1057 (1999).CrossRefGoogle Scholar
41Schroeder, V., Gilbert, C.J., and Ritchie, R.O.: A comparison of the mechanisms of fatigue-crack propagation behavior in a Zr-based bulk amorphous metal in air and an aqueous chloride solution. Mater. Sci. Eng., A 317, 145 (2001).Google Scholar
42Hashimoto, K.: In pursuit of new corrosion-resistant alloys. Corrosion 58, 715 (2002).CrossRefGoogle Scholar
43Hashimoto, K., Masumoto, T., and Shimodaira, S.: Passivity and its breakdown on iron and iron-based alloys, in Proc. Japan-U.S. Seminar, edited by Staehle, R.W. and Okada, H. (NACE International, Houston, TX, 1975), p. 34.Google Scholar
44Hashimoto, K., Kobayashi, K., Asami, K., and Masumoto, T.: Corrosion-resistant amorphous alloys in hot concentrated hydrochloric acids. Metallic corrosion, in Proc. 8th Int. Cong. Metallic Corrosion, (DECHEMA, Frankfort, Germany, 1981), p. 70.Google Scholar
45Pang, S.J., Zhang, T., Asami, K., and Inoue, A.: Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 50, 489 (2002).Google Scholar
46Shen, J., Chen, Q., Sun, J., Fan, H., and Wang, G.: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 (2005).Google Scholar
47Farmer, J.C., Branagan, D.J., Blue, C.A., Rivard, J.D.K., Aprigliano, L.F., Yang, N., Perepezko, J.H., and Beardsley, M.B.: Corrosion characterization of iron-based high-performance amorphous-metal thermal-spray coatings, in Proc. ASME PVP: Pressure Vessels & Piping Division Conference, (ASME, New York, NY, 2005).Google Scholar
48Farmer, J.C., Haslam, J.J., Day, S.D., Lian, T., Rebak, R., Yang, N., and Aprigliano, L.: Corrosion resistance of iron-based amorphous metal coatings, in Proc. ASME PVP: Pressure Vessels and Piping Division Conference, (ASME, New York, NY, 2006).Google Scholar
49Devine, T.M.: Anodic polarization and localized corrosion behavior of amorphous Ni35Fe30Cr15P14B6 in near-neutral and acidic chloride solutions. J. Electrochem. Soc. 134, 38 (1977).Google Scholar
50Diegle, R.B.: Crevice corrosion of glassy Fe–Ni–Cr–P–B alloys. Corrosion 36, 362 (1980).Google Scholar
51Singh, I.B., Misra, R.D.K., Chaudhary, R.S., and Akhtar, D.: Anodic polarization behavior of nickel-niobium (Ni60Nb40) and nickel-chromium-niobium (Ni55Cr5Nb40) glasses. Mater. Sci. Eng. 92, 173 (1987).Google Scholar
52Yao, H.B., Li, Y., Lee, A., Chai, J., and Pan, J.S.: The alloying effect of Ni on the corrosion behavior of melt-spun Mg–Ni ribbons. Electrochim. Acta 46, 2649 (2001).CrossRefGoogle Scholar
53Kawashima, A., Habazaki, H., and Hashimoto, K.: Highly corrosion-resistant Ni-based bulk amorphous alloys. Mater. Sci. Eng., A 304–306, 753 (2001).Google Scholar
54Habazaki, H., Ukai, H., Izumiya, K., and Hashimoto, K.: Corrosion behaviour of amorphous Ni–Cr–Nb–P–B bulk alloys in 6M HCl solution. Mater. Sci. Eng., A 318, 77 (2001).Google Scholar
55Hashimoto, K., Shinomiya, H., Nakazawa, A., and Asami, K.: Spontaneous passivation of amorphous bulk Ni–Cr–Mo–Ta–Nb–P alloys in concentrated HCl, in Passivity 9 Conference Proceedings, (2005), pp. 6570.Google Scholar
56Katagiri, H., Meguro, S., Yamasaki, M., Habazaki, H., Sato, T., Kawashima, A., Asami, K., and Hashimoto, K.: Synergistic effect of three corrosion-resistant elements on corrosion resistance in concentrated hydrochloric acid. Corros. Sci. 43, 171 (2001).Google Scholar
57Hashimoto, K., Katagiri, H., Habazaki, H., Yamasaki, J.M., Kawashima, A., Izumiya, K., Ukai, H., Asami, K., and Meguro, S.: Extremely corrosion-resistant bulk amorphous alloys. Mater. Sci. Forum 377, 1 (2001).Google Scholar
58Diegle, R.B.: Versatile electrochemical cell for studying corrosion in aerosol containers. Corrosion 35, 250 (1979).Google Scholar
59Pampillo, C.A.: Flow and fracture in amorphous alloys. J. Mater. Sci. 10, 1194 (1975).Google Scholar
60Kawashima, A., Hashimoto, K., and Masumoto, T.: Hydrogen embrittlement of amorphous Fe–Cr–Mo alloys. Corrosion 36, 577 (1980).CrossRefGoogle Scholar
61Sandenbergh, R.F. and Latanision, R.M.: The stress corrosion cracking of a glassy Fe32Ni36Cr14P12B6 alloy. Corrosion 41, 369 (1985).CrossRefGoogle Scholar
62Kawashima, A., Hashimoto, K., and Masumoto, T.: Stress-corrosion cracking of amorphous iron base alloys. Corros. Sci. 16, 935 (1976).Google Scholar
63Zeller, R.L. and Landau, U.: The effect of hydrogen on the ductility of electrodeposited Ni–P amorphous alloys. J. Electrochem. Soc. 137, 1107 (1990).CrossRefGoogle Scholar
64Latanision, R.M., Turn, J.C., and Compeau, C.R.: The corrosion resistance of glassy metals, in Proceedings of the Third International Conference on Mechanical Behavior of Metals, (1979), pp. 475483.Google Scholar
65Hara, M. and Latanision, R.M.: The effect of aging on the diffusivity of hydrogen in amorphous Ni–Si–B alloy. Corros. Sci. 37, 865 (1995).Google Scholar
66Inoue, A., Kitamura, A., and Masumoto, T.: The effect of aluminum on mechanical-properties and thermal-stability of (Fe,Co,Ni)– Al–B ternary amorphous-alloys. J. Mater. Sci. 16, 1895 (1981).Google Scholar
67Inoue, A., Bizen, Y., Kimura, H.M., Yamamoto, M., Tsai, A.P., and Masumoto, T.: Development of compositional short-range ordering in an Al50Ge40Mn10 amorphous alloy upon annealing. J. Mater. Sci. Lett. 6, 811 (1987).Google Scholar
68Suzuki, R.O., Komatsu, Y., Kobayashi, K.E., and Shingu, P.H.: Formation and crystallization of Al–Fe–Si amorphous alloys. J. Mater. Sci. 18, 1195 (1983).Google Scholar
69Inoue, A., Yamamoto, M., Kimura, H.M., and Masumoto, T.: Ductile aluminium-base amorphous alloys with two separate phases. J. Mater. Sci. Lett. 6, 194 (1987).Google Scholar
70Tsai, A.P., Inoue, A., and Masumoto, T.: Formation of metal-metal type aluminum-based amorphous alloys. Metall. Trans. 19A, 1369 (1988).Google Scholar
71Tsai, A.P., Inoue, A., and Masumoto, T.: Ductile Al–Ni–Zr amorphous alloys with high mechanical strength. J. Mater. Sci. Lett. 7, 805 (1988).Google Scholar
72Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T.: New amorphous alloys with good ductility in Al–Y–M and Al–La–M (M = Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys. 27, L.280 (1988).Google Scholar
73Inoue, A., Ohtera, K., and Masumoto, T.: New amorphous alloys with good ductility in Al–Ce–M (M = Nb, Fe, Co, Ni, or Cu) systems. Jpn. J. Appl. Phys. 27, L.1796 (1988).CrossRefGoogle Scholar
74Inoue, A., Ohtera, K., Zhang, T., and Masumoto, T.: New amorphous Al–Ln (Ln = Pr, Nd, Sm or Gd) alloys prepared by melt spinning. Jpn. J. Appl. Phys. 27, L.1583 (1988).CrossRefGoogle Scholar
75Inoue, A., Zhang, T., Kita, K., and Masumoto, T.: On the nature of the quasicrystalline phase in rapidly solidified Al–Co–Si alloys. Mater. Trans., JIM 30, 870 (1989).Google Scholar
76Hsieh, H.Y., Toby, B.H., Egami, T., He, Y., Poon, S.J., and Shiflet, G.J.: Atomic-structure of amorphous Al90Fex Ce10−x. J. Mater. Res. 5, 2807 (1990).Google Scholar
77Mansour, A.N., Wong, C.P., and Brizzolara, R.A.: Atomic structure of amorphous Al100−2x CoxCex (x = 8, 9, and 10) and Al80Fe10Ce10 alloys: An XAFS study. Phys. Rev. B 50, 12401 (1994).CrossRefGoogle Scholar
78Zhang, L., Wu, Y.S., Bian, X.F., Li, H., Wang, W.M., Li, J.G., and Lun, N.: Origin of the prepeak in the structure factors of liquid and amorphous Al–FevCe alloys. J. Phys. Condens. Matter 11, 7959 (1999).Google Scholar
79Guo, F.Q., Enouf, S.J., Poon, S.J., and Shiflet, G.J.: Formation of ductile Al-based metallic glasses without rare-earth elements. Philos. Mag. Lett. 81, 203 (2001).Google Scholar
80Sweitzer, J.E., Shiflet, G.J., and Scully, J.R.: Localized corrosion of Al90Fe5Gd5 and Al87Ni8.7Y4.3 alloys in the amorphous, nanocrystalline, and crystalline states: Resistance to micrometer-scale pit formation. Electrochim. Acta 48, 1223 (2003).Google Scholar
81Lucente, A., Shiflet, G.J., and Scully, J.R.: Localized corrosion of an Al90Fe5Gd5 Alloy as a function of devitrfication, in Critical Factors in Localized Corrosion IV, A Symposium in Honor of the 65th Birthday of Hans Bohni, (ECS Proceedings V, 2002), pp. 295309.Google Scholar
82Lucente, A.M., Shiflet, G.J., and Scully, J.R.: Pit initiation on partially devitrified glassy alloys, in ECS Transactions, 206th Meeting of the Electrochemical Society, Inc. Third International Symposium on Pits and Pores: Formation, Properties, and Significance for Advanced Materials, (2004).Google Scholar
83Yao, H.B., Li, H., and Wee, A.: Corrosion behavior of melt-spun Mg65Ni20Nd15 and Mg65Cu25Y10 metallic glasses. Electrochim. Acta 48, 2641 (2003).Google Scholar
84Gebert, A., Khorkounov, B., Wolff, U., Mickel, C., Uhlemann, M., and Schultz, L.: Stability of rapidly quenched and hydrogenated Mg–Ni–Y and Mg–Cu–Y alloys in extreme alkaline medium. J. Alloys Compd. 419, 319 (2006).Google Scholar
85Savyak, M., Hirnyj, S., Bauer, H-D., Uhlemann, M., Eckert, J., Schultz, L., and Gebert, A.: Electrochemical hydrogenation of Mg65Cu25Y10 metallic glass. J. Alloys Compd. 364, 229 (2004).Google Scholar