Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:27:55.407Z Has data issue: false hasContentIssue false

Controlled decomposition and reformation of the 2223 phase in Ag-clad (Bi, Pb)2Sr2Ca2Cu3Ox tapes and its influence on the microstructure and critical current density

Published online by Cambridge University Press:  31 January 2011

J. A. Parrell
Affiliation:
Applied Superconductivity Center and Materials Science Program, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706
Y. Feng
Affiliation:
Applied Superconductivity Center and Materials Science Program, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706
S. E. Dorris
Affiliation:
Argonne National Laboratory, Energy Technology Division, Argonne, Illinois 60439
D. C. Larbalestier
Affiliation:
Applied Superconductivity Center and Materials Science Program, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706
Get access

Abstract

The decomposition of almost fully reacted (Bi, Pb)2Sr2Ca2Cu3Ox (BSCCO-2223) tapes caused by heating in 1 atm of pure O2 at 825 °C has been studied. It was found that partially decomposing 2223 tapes to a mixture of Bi2Sr2Ca1Cu2Oy, (Ca, Sr)2PbO4, and other secondary phases reduced the critical current density (77 K, 0 T) from ∼20 kA/cm2 to nearly zero. Reheating the tapes in 7.5% O2 restored the 2223 phase and, while there was some degradation of the 2223 grain alignment due to residual secondary phase growth, the critical current density was also restored to nearly its original value. We hypothesize that such a decomposition/reformation process can be useful in increasing the connectivity and relative density of polycrystalline 2223, by encouraging the formation of a liquid phase which heals residual cracks in the BSCCO core.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Osamura, K., Oh, S. S., and Ochiai, S., Supercond. Sci. Technol. 5, 1 (1992).CrossRefGoogle Scholar
2.Yamada, Y., Satou, M., Murase, S., Kitamura, T., and Kamisada, Y., in Advances in Superconductivity V, edited by Bando, Y. and Yamauchi, H. (Springer, Tokyo, 1993), p. 717.CrossRefGoogle Scholar
3.Parrell, J. A., Dorris, S. E., and Larbalestier, D. C., Adv. Cryo. Eng. 40, 193 (1994).Google Scholar
4.Parrell, J. A., Dorris, S. E., and Larbalestier, D. C., Physica C 231, 137 (1994).CrossRefGoogle Scholar
5.Glowacki, B. A. and Jackiweicz, J., J. Appl. Phys. 75, 2992 (1994).Google Scholar
6.Li, Q., Brodersen, K., Hjuler, H. A., and Freltoft, T., Physica C 217, 360 (1993).CrossRefGoogle Scholar
7.Larbalestier, D. C., Feng, Y., Cai, X. Y., Edelman, H., Hellstrom, E. E., High, Y. E., Parrell, J. A., Sung, Y. S., and Umezawa, A. in Proc. 7th Int. Workshop on Critical Currents in Superconductors, edited by Weber, H. W. (World Scientific Publishing Co., Singapore, 1994), p. 82.Google Scholar
8.Uzumaki, T., Yamanaka, K., Kamehara, N., and Niwa, K., Jpn. J. Appl. Phys. 28, L75 (1989).CrossRefGoogle Scholar
9.Wong-Ng, W., Chiang, C.K., Freiman, S.W., Cook, L.P., and Hill, M.D., Am. Ceram. Soc. Bull. 71, 1261 (1992).Google Scholar
10.Yamada, Y., Obst, B., and Flükiger, R., Supercond. Sci. Technol. 4, 165 (1991).CrossRefGoogle Scholar
11.Morgan, P. E. D., Piché, J.D., and Housley, R. M., Physica C 191, 179 (1992).CrossRefGoogle Scholar
12.Lee, H. K., Park, K., and Ha, D. H., J. Appl. Phys. 70, 2764 (1991).CrossRefGoogle Scholar
13.Chen, F. H., Koo, H. S., and Tseng, T. Y., Appl. Phys. Lett. 58, 637 (1991).CrossRefGoogle Scholar
14.Smith, M. G., Phillips, D. S., Peterson, D. E., and Willis, J.O., Physica C 224, 168 (1994).CrossRefGoogle Scholar
15.Dorris, S. E., Prorock, B. C., Lanagan, M. T., Sinha, S., and Poeppel, R. B., Physica C 212, 66 (1993).CrossRefGoogle Scholar
16.Dorris, S. E., Prorock, B. C., Lanagan, M. T., Browning, N. B., Hagen, M. R., Parrell, J. A., Feng, Y., Umezawa, A., and Larbalestier, D. C., Physica C 223, 163 (1994).CrossRefGoogle Scholar
17.Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., and Riley, G. N. Jr., Appl. Supercond. 1, 101 (1993).Google Scholar
18.High, Y. E., Feng, Y., Sung, Y. S., Hellstrom, E. E., and Larbalestier, D. C., Physica C 220, 81 (1994).CrossRefGoogle Scholar
19.Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., Riley, G. N. Jr., and Sandhage, K. H., J. Appl. Phys. 72, 2385 (1992).CrossRefGoogle Scholar
20.MacManus-Driscoll, J. L., Bravman, J.C., Savoy, R. J., Gorman, G., and Beyers, R. B., J. Am. Ceram. Soc. 77, 2305 (1994).CrossRefGoogle Scholar
21.Xu, M. and Finnemore, D. K., J. Appl. Phys. 76, 1111 (1994).CrossRefGoogle Scholar
22.Dou, S. X., Liu, H. K., Guo, Y. C., and Shi, D. L., IEEE Trans. Appl. Supercond. 3, 1135 (1993).CrossRefGoogle Scholar
23.Guo, Y. C., Liu, H. K., and Dou, S. X., Appl. Supercond. 1, 25 (1993).CrossRefGoogle Scholar
24.Chen, Y. L. and Stevens, R., J. Am. Ceram. Soc. 75, 1150 (1992).CrossRefGoogle Scholar
25.Feng, Y., High, Y. E., Larbalestier, D. C., Sung, Y. S., and Hellstom, E. E., Appl. Phys. Lett. 62, 1553 (1993).CrossRefGoogle Scholar
26.Hatano, T., Aota, K., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2055 (1988).CrossRefGoogle Scholar
27.Johnson, D. W. Jr., and Rhodes, W. W., J. Am. Ceram. Soc. 72, 2346 (1989).CrossRefGoogle Scholar
28.Grivel, J-C. and Flükiger, R., Physica C 235–240, 505 (1994).Google Scholar
29.Kusano, Y., Nanba, T., Takada, J., Egi, T., Ikeda, Y., and Takano, M., Physica C 219, 366 (1994).CrossRefGoogle Scholar
30.Parrell, J. A., Dorris, S. E., and Larbalestier, D. C., IEEE Trans. Appl. Supercond. 5, 1275 (1995).CrossRefGoogle Scholar
31.Parrell, J. A. and Larbalestier, D. C., unpublished work.Google Scholar
32.Zhu, W. and Nicholson, P. S., J. Appl. Phys. 73, 8423 (1993).CrossRefGoogle Scholar
33.Xie, M., Zhang, L. W., Chen, T. G., and Cai, J., Physica C 206, 251 (1993).Google Scholar
34.Dou, S. X., Liu, H. K., Zhang, Y. L., and Blain, W. H., Supercond. Sci. Technol. 4, 203 (1991).CrossRefGoogle Scholar
35.Briant, C. L., Hall, E. L., Lay, K. W., and Tkaczyk, J. E., J. Mater. Res. 9, 2789 (1994).CrossRefGoogle Scholar
36.Masini, R., Dimesso, L., Migliori, A., Francesconi, M. G., and Calestani, G., Physica C 223, 189 (1994).CrossRefGoogle Scholar
37.Umezawa, A., Feng, Y., Edelman, H.S., High, Y.E., Larbalestier, D.C., Sung, Y. S., and Hellstrom, E. E.. Physica C 198, 261 (1992).Google Scholar
38.Umezawa, A., Feng, Y., Edelman, H. S., Willis, T. C., Parrell, J. A., Larbalestier, D. C., Riley, G. N. Jr., and Carter, W. L., Physica C 219, 378 (1994).CrossRefGoogle Scholar
39.Pashitski, A., Polyanskii, A., Gurevich, A., Parrell, J. A., and Larbalestier, D. C., Physica C 246, 133 (1995).CrossRefGoogle Scholar