Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:18:41.020Z Has data issue: false hasContentIssue false

Constrained Cavitation and Fast Fracture at Metal-ceramic Interfaces at Elevated Temperatures

Published online by Cambridge University Press:  31 January 2011

C. M. Kennefick
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005
Get access

Abstract

Processes that constrain or promote cavity growth and fast fracture at elevated temperatures are examined. Solutions are given for the stress caused by inhomogeneous deposition of matter in metal-ceramic and alumina grain boundaries and for the tensile stress near the top of a hemispherical pore during pore growth. Velocities of dislocation climb that could promote fast fracture are calculated for elastic stresses acting upon dislocations arising from both a crack tip and interface repulsion. The rates for the atomic diffusive processes and the magnitudes of stresses resulting from them are found to agree well with experimental rate of pore growth, and new data on pore growth and fracture at an aluminum-sapphire interface are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hull, D. and Rimmer, D. E., Philos. Mag. 4 673 (1959).CrossRefGoogle Scholar
2.Raj, R. and Ashby, M. F., Acta. Metall. Mater. 23, 653 (1975).CrossRefGoogle Scholar
3.Dyson, B. F. and Rogers, M. J., Metal Sci. 8, 261 (1974).CrossRefGoogle Scholar
4.Dyson, B. F., Metal Sci. 10, 349 (1976).CrossRefGoogle Scholar
5.Kennefick, C. M. and Raj, R., Acta Metall. Mater. 40 (4), 615 (1992).CrossRefGoogle Scholar
6.Pavinich, W. and Raj, R., Metall. Trans. A 8A, 1917 (1977).CrossRefGoogle Scholar
7.Beere, W., J. Mater. Sci. 15, 657 (1980).CrossRefGoogle Scholar
8.Beere, W., Acta. Metall. Mater. 28, 148 (1980).CrossRefGoogle Scholar
9.Arzt, E., Ashby, M. F., and Verrall, R. A., Acta. Metall. Mater. 31 (12), 1977 (1983).CrossRefGoogle Scholar
10.Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, 4th ed., English Translation (P. Noordhoff Ltd., Groningen, The Netherlands, 1963).Google Scholar
11.Muskhelishvili, N. I., Zeitschr. f. Angew. Math. u. Mech. 13, 264 (1933).CrossRefGoogle Scholar
12.Nadeau, G., Introduction to Elasticity (Holt, Rinehart, and Winston, Inc., 1964), Chap. 7.Google Scholar
13.Herring, C., J. Appl. Phys. 21 (5), 437 (1950).CrossRefGoogle Scholar
14.Friedel, J., Dislocations (Pergamon Press, New York, 1964).Google Scholar
15.Dundurs, J. and Sendeckyj, G. P., J. Appl. Phys. 36, 3353 (1965).CrossRefGoogle Scholar
16.Broek, D., Elementary Engineering Fracture Mechanics (Martinus Nijhoff, 1982).Google Scholar
17.Raj, R., Acta Metall. Mater. 26, 341 (1977).CrossRefGoogle Scholar
18.Johnson, S.M., Dalgleish, B. J., and Evans, A. G.J. Am. Ceram. Soc. 67 (11), 759 (1984).CrossRefGoogle Scholar
19.Dalgleish, B.J., Slamovich, E. B., and Evans, A. G., J. Am. Ceram. Soc. 68 (11), 575 (1985).CrossRefGoogle Scholar
20.Chang, H.C. and Grant, N. J., Trans. AIME, J. Metals, 1977 (1953).Google Scholar
21.Chang, H.C. and Grant, N.J., Trans. AIME, J. Metals, 619 (1952).Google Scholar
22.Rice, J. R., Acta Metall. Mater. 29, 675 (1981).CrossRefGoogle Scholar
23.Needleman, A. and Rice, J. R., Acta Metall. Mater. 28, 1315 (1980).CrossRefGoogle Scholar
24.Stanzl, S.E., Argon, A. S., and Tschegg, E. K., Acta Metall. Mater. 31 (6), 833 (1983).CrossRefGoogle Scholar
25.Beraud, C., Coubiere, M., Esnouf, C., Juve, D., and Trebeux, D., J. Mater. Sci. 24, 4545 (1989).CrossRefGoogle Scholar
26.Rice, J. R., Acta Metall. Mater. 29, 675 (1981).CrossRefGoogle Scholar