Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T02:28:14.406Z Has data issue: false hasContentIssue false

Compositional and physical changes on perovskite crystal surfaces

Published online by Cambridge University Press:  31 January 2011

S. P. Chen
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Extract

The surface composition of BaTiO3, SrTiO3, and CaTiO3 perovskite (100) surface is determined by shell-model calculations. The TiO2-terminated surface is energetically favorable for BaTiO3 and SrTiO3, which is consistent with experimental observations on SrTiO3. On the other hand, the CaO-terminated surface is preferred for CaTiO3 where Ca2+ is the smallest 2+ cation in these titanates. Ions on (100) surface rumple and induce surface dipoles. The surface ferroelectric polarization stabilizes the surface and changes its sign as the surface composition changes from TiO2 to CaO. This phenomenon is expected to affect the stability and properties of epitaxial films on perovskite substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.MRS Bulletin, June and July issues (Materials Research Society, Pittsburgh, PA, 1996).Google Scholar
2.Henrich, V. E. and Cox, P. A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, UK, 1996).Google Scholar
3.Yang, X.et al., Angew. Chem. Int. Ed. Engl. 35, 538 (1996).CrossRefGoogle Scholar
4.Lange, F. F., Science 273, 903 (1996).CrossRefGoogle Scholar
5.Tanaka, H. and Kawai, T., Surf. Sci. 365, 437 (1996).CrossRefGoogle Scholar
6.Kawasaki, M., Takahasi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., Koinuma, H., Science, 266, 1540 (1994).CrossRefGoogle Scholar
7.Yoshimoto, M.et al., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 133.Google Scholar
8.Kawai, M., Liu, Z. Y., Hanada, T., Katayama, M., Aono, M., and McConville, C. F., Appl. Surf. Sci. 823, 487 (1994).CrossRefGoogle Scholar
9.Chien, A. T., Speck, J. S., Lange, F. F., Daykin, A. C., and Levi, C. G., J. Mater. Res. 10, 1784 (1995).CrossRefGoogle Scholar
10.Dick, B. G. and Overhauser, A. W., Phys. Rev. B 112, 90 (1958).CrossRefGoogle Scholar
11.Bush, T. S., Gale, J. D., Catlow, C. R. A., and Battle, P. D., J. Mater. Chem. 4, 831 (1994).CrossRefGoogle Scholar
12.Gay, D. H. and Rohl, A. L., J. Chem. Soc. Faraday Trans. 91, 925 (1995).CrossRefGoogle Scholar
13.Yan, M., Chen, S. P., Mitchell, T. E., Gay, D. H., Vyas, S., and Grimes, R. W., Philos. Mag. A 72, 121 (1995).CrossRefGoogle Scholar
14.Tasker, P. W. and Duffy, D. M., Surf. Sci. 137, 91 (1984).CrossRefGoogle Scholar
15.Wyckoff, R. W. G., Crystal Structures, 2nd ed., Vol. 2: Inorganic Compounds Rxn, RnMX2, RnMX3 (Interscience Publishers, New York, 1964) p. 391, Table VIIA,7.Google Scholar
16. See, for example, Press, W. H., Teukolsky, S. A., Vettering, W. T., and Flannery, B. P., Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, UK, 1994).Google Scholar
17.Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. B25, 925 (1969).CrossRefGoogle Scholar
18.Chen, S. P., Voter, A. F., and Srolovitz, D. J., Phys. Rev. Lett. 57, 1308 (1986).CrossRefGoogle Scholar
19.Davis, H. L. and Noonan, J. R., Phys. Rev. Lett. 54, 566 (1985).CrossRefGoogle Scholar
20.Bickel, N., Schmidt, G., Heinz, K., and Muller, K., Phys. Rev. Lett. 62, 2009 (1989).CrossRefGoogle Scholar
21.Henrich, V. E. and Cox, P. A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, UK, 1996), pp. 3641.Google Scholar