Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-06T05:39:12.889Z Has data issue: false hasContentIssue false

Competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy

Published online by Cambridge University Press:  31 January 2011

Feng Liu*
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
Yuzeng Chen
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
Gencang Yang
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
Yiping Lu
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
Zheng Chen
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
Yaohe Zhou
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Adopting glass fluxing and cyclic superheating, high undercooling up to ∼550 K was achieved in bulk eutectic Ni78.6Si21.4 alloy melt. With increasing undercooling, the as-solidified microstructure shows an interesting evolution, i.e., regular lamellar eutectic, coarse directional dendrite, quasi-spherical dendritic colony, fine directional dendrite, fine quasi-spherical dendritic colony, and superfine anomalous eutectic. In combination with different theories for nucleation and growth, the microstructure evolution was analyzed and described using competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy. For undercooling below and above 180 K, Ni3Si, and α-Ni are primarily solidified, respectively. This phase selection can be ascribed to competitive nucleation. As undercooling increases, a transition of the prevalent nucleation mode from site saturation to continuous nucleation was interpreted in terms of competition of nucleation mode. Accordingly, the superfine anomalous eutectic is obtained, due to the substantially increased continuous nucleation rate, i.e., grain refinement occurring at high undercooling (e.g., ∼550 K).

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lipton, J., Kurz, W.Trivedi, R.: Rapid dendrite growth in undercooled alloys. Acta Metall. 35, 957 1987CrossRefGoogle Scholar
2Hunt, J.D.Jackson, K.A.: Nucleation of solid in an undercooled liquid by cavitation. J. Appl. Phys. 37, 254 1965CrossRefGoogle Scholar
3Jackson, K.A.Hunt, J.D.: Lamellar and rod eutectic growth. Trans. AIME 236, 1129 1966Google Scholar
4Trivedi, R., Magnin, P.Kurz, W.: Theory of eutectic growth under rapid solidification conditions. Acta Metall. 35, 971 1987CrossRefGoogle Scholar
5Jackson, K.A., Hunt, J.D.Uhlmann, D.R.: On origin of equiaxed zone in casting. Trans. Met. Soc. AIME 236(2), 149 1966Google Scholar
6Kattamis, T.Z.Flemings, M.C.: Dendrite structure and grain size of undercooled melts. Trans. Met. Soc. AIME 236, 1523 1966Google Scholar
7Powell, G.L.F.: The influence of oxygen content on the grain size of undercooled silver. Trans. Met. Soc. AIME 245, 1785 1969Google Scholar
8Liu, F.Yang, G.C.: Stress-induced recrystallization mechanism fro grain refinement in highly undercooled superalloy. J. Cryst. Growth 231, 295 2001CrossRefGoogle Scholar
9Liu, F., Zhao, D.W.Yang, G.C.: Solidification of undercooled molten Ni-based alloys. Metall. Mater. Trans. B 32(3), 449 2001CrossRefGoogle Scholar
10Liu, F., Guo, X.F.Yang, G.C.: Structure evolution in undercooled DD3 single crystal superalloy. Mater. Sci. Eng., A 291(1–2), 9 2000CrossRefGoogle Scholar
11Kurz, W.Fisher, D.J.: Solidification microstructures: Eutectics and peritectics in Fundamentals of Solidification edited by W. Kurz and D.J. Fisher Trans Tech Publications Ltd. Switzerland 1998 Chap. 5, p. 93CrossRefGoogle Scholar
12Perepezko, J.H.: Kinetic processes in undercooled melts. Mater. Sci. Eng., A 226–228, 374 1997CrossRefGoogle Scholar
13Perepezko, J.H.: Nucleation-controlled reactions and metastable structures. Prog. Mater. Sci. 49, 263 2004CrossRefGoogle Scholar
14Goetzinger, R., Barth, M.Herlach, D.M.: Growth of lamellar eutectic dendrites in undercooled melts. J. Appl. Phys. 84, 1643 1998CrossRefGoogle Scholar
15Cochrane, R.F., Greer, A.L., Eckler, K.Herlach, D.M.: Dendrite growth velocities in undercooled Ni–Si alloys. Mater. Sci. Eng., A 133, 698 1991CrossRefGoogle Scholar
16Lu, Y.P., Yang, G.C., Yang, C.L.Zhou, Y.H.: Directional solidification of highly undercooled eutectic Ni78.6Si21.4 alloy. Mater. Lett. 59, 1558 2005CrossRefGoogle Scholar
17Milenkovic, S.Caram, R.: Effect of the growth parameters on the Ni–Ni3Si eutectic microstructure. J. Cryst. Growth 95, 237 2002Google Scholar
18Goetzinger, R., Barth, M.Herlach, D.M.: Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni–Si, Co–Sb and Ni–Al–Ti alloys. Acta Mater. 46, 1647 1988CrossRefGoogle Scholar
19Leonhardt, M., Löser, W.Lindenkreuz, H.G.: Metastable phase formation in undercooled eutectic Ni78.6Si21.4 melts. Mater. Sci. Eng., A 271, 31 1999CrossRefGoogle Scholar
20Kattamis, T.Z.Flemings, M.C.: Structure of undercooled Ni–Sn eutectic. Metall. Trans. 1, 1449 1970CrossRefGoogle Scholar
21Jones, B.L.: Growth mechanisms in undercooled eutectics. Metall. Trans. 2, 2950 1971CrossRefGoogle Scholar
22Wei, B., Herlach, D.M., Feuerbacher, B.Sommer, F. Dendritic and eutectic solidification of undercooled Co–Sb alloys.Acta Metall.,41, 1801 (1993)CrossRefGoogle Scholar
23Wei, B.Herlach, D.M. Dendrite growth in undercooled monotectic alloys, (Advanced Materials ’93),Trans. Mater. Res. Soc. Jpn.,14A, 639 (1994)CrossRefGoogle Scholar
24Nash, P.Nash, A.: Phase Diagrams of Binary Nickel Alloy ASM International Materials Park, OH 1991 22Google Scholar
25Christian, J.W.: The classical theory of nucleation in The Theory of Transformation in Metals and Alloys edited by J.W. Christian Pergamon Press Oxford, England 1975 Chap. 10, p. 418Google Scholar
26Turnbull, D.: Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411 1952CrossRefGoogle Scholar
27Wood, G.R.Waltons, A.G.: Homogeneous nucleation kinetics of ice from water. J. Appl. Phys. 41, 3027 1970CrossRefGoogle Scholar
28Mittemeijer, E.J.Sommer, F.: Solid-state phase transformation kinetics: A modular transformation model. Z. Metallkd. 93, 5 2002CrossRefGoogle Scholar
29Liu, F., Sommer, F.Mittemeijer, E.J.: An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39, 1621 2004CrossRefGoogle Scholar
30Mittemeijer, E.J.: Analysis of the kinetics of phase transformations. J. Mater. Sci. 27, 3977 1992CrossRefGoogle Scholar
31Liu, F., Sommer, F.Mittemeijer, E.J.: Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data. Acta Mater. 52, 3207 2004CrossRefGoogle Scholar
32Kempen, A.T.W., Sommer, F.Mittemeijer, E.J.: The isothermal and isochronal kinetics of the crystallisation of bulk amorphous Pd40Cu30P20Ni10. Acta Mater. 50, 1319 2002CrossRefGoogle Scholar
33Nitsche, H., Sommer, F.Mittemeijer, E.J.: The Al nano-crystallization process in amorphous Al85Ni8Y5Co2. J. Non-Cryst. Solids. 351, 3760 2005CrossRefGoogle Scholar
34Liu, F., Sommer, F.Mittemeijer, E.J.: Parameter determination of an analytical model for phase transformation kinetics: application to crystallization of amorphous Mg–Ni alloys. J. Mater. Res. 19(9), 2586 2004CrossRefGoogle Scholar
35Oldfield, W.: A quantitative approach to casting solidification. Trans. ASM 59, 945 1966Google Scholar
36Boettinger, W.J., Coriell, S.R.Trivedi, R.: Rapid Solidification Processing: Principles and Technologies IV edited by R. Mehrabian, P.A. Parrish Claitor’s Baton Rouge LA 1988 13Google Scholar
37Aziz, M.J.: Model for solute redistribution during rapid solidification. J. Appl. Phys. 53, 1158 1982CrossRefGoogle Scholar
38Lu, Y.P., Liu, F., Yang, G.C., Wang, H.P.Zhou, Y.H.: Grain refinement in solidification of highly undercooled eutectic Ni–Si alloy. Mater. Lett. 61(4–5), 987 2007CrossRefGoogle Scholar
39Lu, Y.P., Liu, F., Yang, G.C.Zhou, Y.H.: Composite growth in highly undercooled Ni70.2Si29.8 eutectic alloy. Appl. Phys. Lett. 89, 241902 2006CrossRefGoogle Scholar
40Spaepen, F.: A structural model for the solid–liquid interface in monatomic systems. Acta Metall. 23, 729 1975CrossRefGoogle Scholar
41Wilde, G., Sebright, J.L.Perepezko, J.H.: Bulk liquid undercooling and nucleation in gold. Acta Mater. 54, 4759 2006CrossRefGoogle Scholar
42Schwarz, M., Karma, A., Eckler, K.Herlach, D.M.: Physical mechanism of grain refinement in solidification of undercooled melts. Phys. Rev. Lett. 73, 1380 1994CrossRefGoogle ScholarPubMed
43Willnecker, R., Görler, G.P.Wilde, G.: Appearance of a hypercooled liquid region for completely miscible alloys. Mater. Sci. Eng., A 226–228, 439 1997CrossRefGoogle Scholar
44Li, M., Ishikawa, T., Nagashio, K., Kuribayashi, K.Yoda, S.: Experimental evidence of crystal fragmentation from highly undercooled Ni99B1 melts processed on an electrostatic levitator. Metall. Mater. Trans. A 36A, 3254 2005CrossRefGoogle Scholar