Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T17:29:09.176Z Has data issue: false hasContentIssue false

Comparison of apparent activation energies for densification of alumina powders by pulsed electric current sintering (spark plasma sintering) and conventional sintering—toward applications for transparent polycrystalline alumina

Published online by Cambridge University Press:  02 May 2017

Michael Stuer
Affiliation:
Powder Technology Laboratory, Material Science Institute, Swiss Federal Institute of Technology, Lausanne CH-1015, Switzerland
Claude Paul Carry*
Affiliation:
SIMAP, Univ. Grenoble Alpes, CNRS, Grenoble 38 000, France
Paul Bowen*
Affiliation:
Powder Technology Laboratory, Material Science Institute, Swiss Federal Institute of Technology, Lausanne CH-1015, Switzerland
Zhe Zhao
Affiliation:
Department of Materials Science and Engineering, KTH Royal Institute of Technology, Ceramic Technology Division, Stockholm SE-10044, Sweden
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the quest for high real in-line transmittances for transparent polycrystalline alumina (PCA), we need defect free processing. One of the biggest advances in producing high density defect free ceramics over recent years has been the advent of spark plasma sintering (SPS) or pulsed electric current sintering. The production of PCA with high transmittances >60% has been demonstrated, but the mechanisms behind this fast, pressure aided sintering method are still much debated. Here, we investigate the sintering of doped α-alumina powders using traditional and pulsed electric current dilatometry. We demonstrate that at the final sintering stage, there is no major difference in the sintering mechanisms between conventional sintering and SPS sintering. High densification rates occurring in SPS are shown to be related to powder reorientation at the very early sintering stage and viscous-flow dominated densification in the intermediate sintering cycle. This paper clarifies what parameters in the processing–sintering domain have to be improved for even higher real in-line transmittances for PCA.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Eugene Medvedovski

References

REFERENCES

Bernard-Granger, G. and Guizard, C.: Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater. 55, 3493 (2007).Google Scholar
Olevsky, E.A. and Froyen, L.: Impact of thermal diffusion on densification during SPS. J. Am. Ceram. Soc. 92, S122 (2009).Google Scholar
Kim, B.N., Hiraga, K., Mortia, K., and Yoshida, H.: Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina. J. Eur. Ceram. Soc. 29, 323 (2009).Google Scholar
Kim, B.N., Hiraga, K., Mortia, K., and Yoshida, H.: Spark plasma sintering of transparent alumina. Scr. Mater. 57, 607 (2007).Google Scholar
Maca, K., Pouchly, V., and Shen, Z.J.: Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics. Integr. Ferroelectr. 99, 114 (2008).Google Scholar
Roussel, N., Lallemant, L., Chane-Ching, J-Y., Guillemet-Fristch, S., Durand, B., Garnier, V., Bonnefont, G., Fantozzi, G., Bonneau, L., Trombert, S., and Garcia-Gutierrez, D.: Highly dense, transparent α-Al2O3 ceramics from ultrafine nanoparticles via a standard SPS sintering. J. Am. Ceram. Soc. 96, 1039 (2013).Google Scholar
Stuer, M., Zhao, Z., Aschauer, U., and Bowen, P.: Transparent polycrystalline alumina using spark plasma sintering: Effect of Mg, Y and La doping. J. Eur. Ceram. Soc. 30, 1343 (2010).Google Scholar
Stuer, M., Bowen, P., Pecharroman, C., Cantoni, M., and Zhao, Z.: Nanopore characterization and optical modeling of transparent polycrystalline alumina. Adv. Funct. Mater. 22, 2303 (2012).Google Scholar
Zhao, Z. and Wang, C.: Transparent polycrystalline ruby ceramic by spark plasma sintering. Mat. Res. Bull. 45, 1127 (2010).Google Scholar
Morita, K., Kim, B.N., Hiraga, K., and Yoshida, H.: Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing. Scr. Mater. 58, 1114 (2008).Google Scholar
Apetz, R. and van Bruggen, M.P.B.: Transparent alumina: A light-scattering model. J. Am. Ceram. Soc. 86, 480 (2003).CrossRefGoogle Scholar
Krell, A., Hutzler, T., and Klimke, J.: Transmission physics and consequences for materials selection, manufacturing, and applications. J. Eur. Ceram. Soc. 29, 207 (2009).Google Scholar
Pecharroman, C., Mata-Osoro, G., Diaz, L.A., Torrecillas, R., and Moya, J.S.: On the transparency of nanostructured alumina: Rayleigh-Gans model for anisotropic spheres. Opt. Express 17, 6899 (2009).Google Scholar
Krell, A., Klimke, J., and Hutzler, T.: Transparent compact ceramics: Inherent physical issues. Opt. Mater. 31, 1144 (2009).Google Scholar
Su, H.H. and Johnson, D.L.: Master sintering curve: A practical approach to sintering. J. Am. Ceram. Soc. 79, 3211 (1996).Google Scholar
Guillon, O. and Langer, J.: Master sintering curve applied to the field-assisted sintering technique. J. Mater. Sci. 45, 5191 (2010).Google Scholar
Kiani, S., Pan, J., and Yeomans, J.A.: A new scheme of finding the master sintering curve. J. Am. Ceram. Soc. 89, 3393 (2006).Google Scholar
Bernard-Granger, G. and Guizard, C.: Apparent activation energy for the densification of a commercially available granulated zirconia powder. J. Am. Ceram. Soc. 90, 1246 (2007).Google Scholar
Weertman, J.: Dislocation climb theory of steady-state creep. ASM Trans. Q. 61, 681 (1968).Google Scholar
Stuer, M., Zhao, Z., and Bowen, P.: Freeze granulation: Powder processing for transparent alumina applications. J. Eur. Ceram. Soc. 32, 2899 (2012).Google Scholar
Croquesel, J., Bouvard, D., Chaix, J.M., Carry, C.P., Saunier, S., and Marinel, S.: Direct microwave sintering of pure alumina in a single mode cavity: Grain size and phase transformation effects. Acta Mater. 116, 53 (2016).Google Scholar
Zuo, F., Saunier, S., Marinel, S., Chanin-Lambert, P., Peillon, N., and Goeuriot, D.: Investigation of the mechanism(s) controlling microwave sintering of α-alumina: Influence of the powder parameters on the grain growth, thermodynamics and densification kinetics. J. Eur. Ceram. Soc. 35, 959 (2015).Google Scholar
Cho, J.H., Harmer, M.P., Chan, H.M., and Ricman, J.M.: Effect of yttrium and lanthanum on the tensile creep behavior of aluminum oxide. J. Am. Ceram. Soc. 80, 1013 (1997).Google Scholar
Cho, J., Wang, C.M., Chan, H.M., Rickman, J.M., and Harmer, M.P.: Role of segregating dopants on the improved creep resistance of aluminum oxide. Acta Mater. 47, 4197 (1999).Google Scholar
Galmarini, S., Aschauer, U., Bowen, P., and Parker, S.C.: Atomistic simulations of dopant segregation in α-alumina ceramics: Coverage dependent energy of segregation and nominal dopant solubility. J. Am. Ceram. Soc. 91(11), 36433651 (2008).Google Scholar
Lartigue, S. and Priester, L.: Dislocation activity and differences between tensile and compressive creep of yttria-doped alumina. Mater. Sci. Eng., A 164(1–2), 211 (1993).Google Scholar
Lartigue-Korinek, S., Carry, C., and Priester, L.: Multiscale aspects of the influence of yttrium on microstructure, sintering and creep of alumina. J. Eur. Ceram. Soc. 22(9–10), 1525 (2002).Google Scholar
Cho, J., Chan, H.M., Harmer, M.P., and Rickman, J.M.: Influence of yttrium doping on grain misorientation in aluminum oxide. J. Am. Ceram. Soc. 81(11), 3001 (1998).Google Scholar
Pezzotti, G.: Internal friction of polycrystalline ceramic oxides. Phys. Rev. B 60(6), 4018 (1999).Google Scholar
Fang, J.X., Thompson, A.M., Harmer, M.P., and Chan, H.M.: Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina. J. Am. Ceram. Soc. 80(8), 2005 (1997).Google Scholar
Galmarini, S., Aschauer, U., Tewari, A., Aman, Y., Van Gestel, C., and Bowen, P.: Atomistic simulations of dopant segregation in α-alumina ceramics: Coverage dependent energy of segregation and nominal dopant solubility. J. Eur. Ceram. Soc. 31, 2839 (2011).Google Scholar
Tewari, A., Galmarini, S., Stuer, M., and Bowen, P.: Atomistic modelling of the effect of Codoping on the atomistic structure of interfaces in α-alumina. J. Eur. Ceram. Soc. 32(11), 2948 (2012).Google Scholar
Tewari, A., Aschauer, U., and Bowen, P.: Atomistic modeling of effect of Mg on oxygen vacancy diffusion in [alpha]-Alumina. J. Amer. Ceram. Soc. 97(8), 2596 (2014).Google Scholar
Tewari, A., Nabiei, F., Parker, S.C., Cantoni, M., Stuer, M., Bowen, P., and Hébert, C.: Towards knowledge based grain boundary engineering of transparent polycrystalline alumina combining advanced TEM and atomistic modelling. J. Am. Ceram. Soc. 98(6), 1959 (2015).Google Scholar