Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T04:20:59.677Z Has data issue: false hasContentIssue false

A comparative study of Y3+- or/and La3+-doped CeO2–ZrO2-based solid solution

Published online by Cambridge University Press:  01 February 2013

Jiaxiu Guo*
Affiliation:
College of Architecture and Environment, Sichuan University, Chengdu 610065, China; and National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, China
Zhonghua Shi*
Affiliation:
College of Chemistry, Sichuan University, Chengdu 610064, China
Dongdong Wu
Affiliation:
College of Chemistry, Sichuan University, Chengdu 610064, China
Huaqiang Yin
Affiliation:
College of Architecture and Environment, Sichuan University, Chengdu 610065, China; and National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, China
Yaoqiang Chen
Affiliation:
College of Chemistry, Sichuan University, Chengdu 610064, China; and National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Ce0.35Zr0.65−xRExO2 (RE = Y and La; x = 0 and 0.10) and Ce0.35Zr0.50Y0.075La0.075O2 were prepared by a coprecipitation method. The textures, structures, oxygen storage capacity (OSC), and redox properties of all samples were investigated using Brunauer–Emmett–Teller surface area characterization, x-ray diffraction (XRD), Raman spectra, temperature-programmed technique, and oxygen pulse reaction. The results showed that the fresh Ce0.35Zr0.65O2 has cubic phase, 434 μmol/g of OSC, 82 m2/g of surface area, and good redox properties; after aging at 1000 °C, Ce0.35Zr0.65O2 still has cubic phase, 418 μmol/g of OSC, and 50 m2/g of surface area; when Y3+ or La3+ is added to CeO2–ZrO2, the aged Ce0.35Zr0.65−xRExO2 (RE = Y and La; x = 0 and 0.10) still remains cubic phase, high OSC, and large surface area (47 m2/g); when Y3+ and La3+ are simultaneously added into CeO2–ZrO2, a stable solid solution with cubic phase is formed and has 459 μmol/g of OSC; and the aged Ce0.35Zr0.50Y0.075La0.075O2 reaches to 60 m2/g of surface area and has 390 μmol/g of OSC.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gandhi, H.S. and Shelef, M.: The role of research in the development of new generation automotive catalysts. Stud. Surf. Sci. Catal. 30, 199214 (1987).CrossRefGoogle Scholar
Kim, G.: Ceria-promoted three-way catalysts for auto exhaust emission control. Ind. Eng. Chem. Prod. Res. Dev. 21, 267274 (1982).CrossRefGoogle Scholar
Pijolat, M., Prin, M., Soustelle, M., Touret, O., and Nortier, P.: Thermal stability of doped ceria: Experiment and modeling. J. Chem. Soc., Faraday Trans. 91, 39413948 (1995).CrossRefGoogle Scholar
Fornasiero, P., Di Monte, R., Ranga Rao, G., Kašpar, J., Meriani, S., Trovarelli, A., and Graziani, M.: Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: Dependence of the reduction behavior and the oxygen storage capacity on the structural-properties. J. Catal. 151, 168177 (1995).CrossRefGoogle Scholar
Murota, T., Hasegawa, T., Aozasa, S., Matsui, H., and Motoyama, M.: Production method of cerium oxide with high storage capacity of oxygen and its mechanism. J. Alloys Compd. 193, 298299 (1993).CrossRefGoogle Scholar
Rossignol, S., Madier, Y., and Duprez, D.: Preparation of zirconia-ceria materials by soft chemistry. Catal. Today 50, 261270 (1999).CrossRefGoogle Scholar
Kašpar, J., Di Monte, R., Fornasiero, P., Graziani, M., Bradshaw, H., and Norman, C.: Dependency of the oxygen storage capacity in zirconia–ceria solid solutions upon textural properties. Top. Catal. 1617, 8387 (2001).CrossRefGoogle Scholar
Balducci, G., Kašpar, J., Fornasiero, P., Graziani, M., Islam, M.S., and Gale, J.D.: Computer simulation studies of bulk reduction and oxygen migration in CeO2−ZrO2 solid solutions. J. Phys. Chem. B 101, 17501753 (1997).CrossRefGoogle Scholar
Balducci, G., Kašpar, J., Fornasiero, P., Graziani, M., and Islam, M.S.: Surface and reduction energetics of the CeO2−ZrO2 catalysts. J. Phys. Chem. B 102, 557561 (1998).CrossRefGoogle Scholar
Ikryyannikova, L.N., Aksenov, A.A., Markaryan, G.L., Muravieva, G.P., Kostyuk, B.G., Kharlanov, A.N., and Lunina, E.V.: The red-ox treatments influence on the structure and properties of M2O3-CeO2-ZrO2 (M = Y, La) solid solutions. Appl. Catal., A 210, 225235 (2010).CrossRefGoogle Scholar
He, H., Dai, H.X., and Au, C.T.: Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal. Today 90, 245254 (2004).CrossRefGoogle Scholar
He, H., Dai, H.X., Ng, L.H., Wong, K.W., and Au, C.T.: Pd-, Pt-, and Rh-loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: An investigation on performance and redox properties. J. Catal. 206, 113 (2002).CrossRefGoogle Scholar
Vidmar, P., Fornasiero, P., Kaspar, J., Gubitosa, G., and Graziani, M.: Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide. J. Catal. 171, 160168 (1997).CrossRefGoogle Scholar
Guo, J.X., Wu, D.D., Zhang, L., Gong, M.C., Zhao, M., and Chen, Y.Q.: Preparation of nanometric CeO2-ZrO2-Nd2O3 solid solution and its catalytic performances. J. Alloys Compd. 460, 485490 (2008).CrossRefGoogle Scholar
Guo, J.X., Yuan, S.H., Gong, M.C., Shen, M., Zhong, J.B., and Chen, Y.Q.: Influence of Ce0.35Zr0.55Y0.10 solid solution on performance of Pt-Rh three-way catalysts. J. Rare Earths 25, 179183 (2007).CrossRefGoogle Scholar
Guo, J.X., Yuan, S.H., Gong, M.C., Zhang, L., Wu, D.D., Zhao, M., and Chen, Y.Q.: Influence of Ce0.35Zr0.55La0.10O1.95 solid solution on the performance of Pt-Rh three-way catalysts. Acta Phys. Chim. Sin. 23, 7378 (2007).CrossRefGoogle Scholar
Turko, G.A., Ivanva, A.S., Plyasova, L.M., Litvak, G.S., and Rogov, V.A.: Synthesis and characterization of fluorite-like Ce-Zr-Y-La-O systems. Kinet. Catal. 46, 884890 (2005).CrossRefGoogle Scholar
McBride, J.R., Hass, K.C., Poindexter, B.D., and Weber, W.H.: Raman and X-ray studies of Ce1−xRExO2−y, where RE=La, Pr, Nd, Eu, Gd and Tb. J. Appl. Phys. 76, 24352441 (1994).CrossRefGoogle Scholar
Yao, H.C. and Yao, Y.F.Y.: Ceria in automotive exhaust catalysts: I. Oxygen storage. J. Catal. 86, 254265 (1984).CrossRefGoogle Scholar
Zhu, H., Qin, Z., Shan, W., Shen, W., and Wang, J.: Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: A TPR study with H2 and CO as reducing agents. J. Catal. 225, 267277 (2004).CrossRefGoogle Scholar
Teng, M., Luo, L., and Yang, X.: Synthesis of mesoporous Ce1-xZrxO2 (x = 0.2-0.5) and catalytic properties of CuO based catalysts. Microporous Mesoporous Mater. 119, 158164 (2009).CrossRefGoogle Scholar
He, H., Dai, H.X., Wong, K.W., and Au, C.T.: RE0.6Zr0.4−xYxO2 (RE = Ce, Pr; x = 0, 0.05) solid solutions: An investigation on defective structure, oxygen mobility, oxygen storage capacity, and redox properties. Appl. Catal., A 251, 6174 (2003).CrossRefGoogle Scholar
Li, C., Zhou, G., Wang, L., Dong, S., Li, J., and Cheng, T.: Effect of ceria on the MgO-γ-Al2O3 supported CeO2/CuCl2/KCl catalysts for ethane oxychlorination. Appl. Catal., A 400, 104110 (2011).CrossRefGoogle Scholar
Teraoka, Y., Yoshimatsu, M., Yamazoe, N., and Seiyama, T.: Oxygen-sorptive properties and defect structure of perovskite-type oxides. Chem. Lett. 13, 893896 (1984).CrossRefGoogle Scholar
Zhang, H.M., Shimizu, Y., Teraoka, Y., Miura, N., and Yamazoe, N.: Oxygen sorption and catalytic properties of La1−xSrxCo1−yFeyO3 perovskite-type oxides. J. Catal. 121, 432440 (1990).CrossRefGoogle Scholar
Xue, L., Zhang, C., He, H., and Teraoka, Y.: Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal., B 75, 167174 (2007).CrossRefGoogle Scholar
Vidal, H., Kašpar, J., Pijolat, M., Colonb, G., Bernal, S., Cordón, A., Perrichon, V., and Fally, F.: Redox behavior of CeO2–ZrO2 mixed oxides: I. Influence of redox treatments on high surface area catalysts. Appl. Catal., B 27, 4963 (2000).CrossRefGoogle Scholar
Aghabozorg, H.R., Sakhaie, F., Ramezani, M., and Aghabozorg, H.: Doping of Sm into CeO2 nanotubes up to 50%. J. Sci. I. A. U. (JSIAU) 19, 4752 (2009).Google Scholar
Yashima, M. and Wakitak, T.: Atomic displacement parameters and structural disorder of oxygen ions in the CexZr1−xO2 solid solutions (0.12 ≤ x ≤ 1.0): Possible factors of high catalytic activity of ceria-zirconia catalysts. Appl. Phys. Lett. 94, 171902 (2009).CrossRefGoogle Scholar
Yashima, M., Arashi, H., Kakihana, M., and Yoshimura, M.: Raman scattering study of cubic-tetragonal phase transition in Zr1-xCexO2 solid solution. J. Am. Ceram. Soc. 77, 10671071 (1994).CrossRefGoogle Scholar
Nakatani, T., Okamoto, H., and Ota, R.: Preparation of CeO2-ZrO2 mixed oxide powders by the coprecipitation method for the purification catalysts of automotive emission. J. Sol-Gel Sci. Technol. 26, 859863 (2003).CrossRefGoogle Scholar
Kašpar, J., Fornasiero, P., and Graziani, M.: Use of CeO2-based oxides in the three-way catalysis. Catal. Today 50, 285298 (1999).CrossRefGoogle Scholar
Masui, T., Ozaki, T., Machida, K., and Adachi, G.: Preparation of ceria–zirconia sub-catalysts for automotive exhaust cleaning. J. Alloys Compd. 303304, 4955 (2000).CrossRefGoogle Scholar
Vlaic, G., Monte, R.D., Fornasiero, P., Fonda, E., Kašpar, J., and Graziani, M.: Redox property–local structure relationships in the Rh-loaded CeO2–ZrO2 mixed oxides. J. Catal. 182, 378389 (1999).CrossRefGoogle Scholar
Ayastuy, J.L., Gurbani, A., González-Marcos, M.P., and Gutiérrez-Ortiz, M.A.: Selective CO oxidation in H2 streams on CuO/CexZr1-xO2 catalysts: Correlation between activity and low temperature reducibility. Int. J. Hydrogen Energy 37, 19932006 (2012).CrossRefGoogle Scholar
Wang, X., Kang, Q., and Li, D.: Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catal. Commun. 9, 21582162 (2008).CrossRefGoogle Scholar
Cao, L., Pan, L., Ni, C., Yuan, Z., and Wang, S.: Autothermal reforming of methane over Rh/Ce0.5Zr0.5O2 catalyst: Effects of the crystal structure of the supports. Fuel Process. Technol. 91, 306312 (2010).CrossRefGoogle Scholar
Zhang, H., Yang, Q., Zhang, B., and Lu, S.: Raman spectroscopic investigation of lanthana-doped neodymium-yttria transparent ceramics. J. Raman Spectrosc. 42, 13841387 (2011).CrossRefGoogle Scholar
Markaryan, G.L., Ikryannikova, L.N., Muravieva, G.P., Turakulova, A.O., Kostyuk, B.G., Lunina, E.V., Lunin, V.V., Zhilinskaya, E., and Aboukaïs, A.: Red-ox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions. Colloids Surf., A 151, 435447 (1999).CrossRefGoogle Scholar
Kulyova, S.P., Lunina, E.V., Lunin, V.V., Kostyuk, B.G., Muravyova, G.P., and Kharlanov, A.N.: Redox behavior of Y0.05Ce0.1Zr0.85O2 and Y0.1Ce0.1Zr0.8O2 system catalysts doped with copper(II). Chem. Mater. 13, 14911496 (2001).CrossRefGoogle Scholar
Terribile, D., Trovarelli, A., Llorcha, J., de Leitenburg, C., and Dolcctti, G.: The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route. J. Catal. 178, 299308 (1998).CrossRefGoogle Scholar
Mamontov, E., Egami, T., Brezny, A., Koranne, M., and Tyagi, S.: Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. B 104, 1111011116 (2000).CrossRefGoogle Scholar
Fornasiero, P., Montini, T., Graziani, M., Kašpar, J., Hungria, A.B., Martinez-Arias, A., and Conesa, J.C.: Effects of thermal pretreatment on the redox behaviour of Ce0.5Zr0.5O2: Isotopic and spectroscopic studies. Phys. Chem. Chem. Phys. 4, 149159 (2002).CrossRefGoogle Scholar
Balducci, G., Fornasiero, P., Di Monte, R., Kašpar, J., Meriani, S., and Grazini, M.: An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperatures. Catal. Lett. 33, 193200 (1995).CrossRefGoogle Scholar
Liotta, L.F., Ousmane, M., Di Carlo, G., Pantaleo, G., Deganello, G., Marcì, G., Retailleau, L., and Giroir-Fendler, A.: Total oxidation of propene at low temperature over Co3O4–CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl. Catal., A 347, 8188 (2008).CrossRefGoogle Scholar
Binet, C., Daturi, M., and Lavalley, J.C.: IR study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 50, 207225 (1999).CrossRefGoogle Scholar