Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T05:10:21.407Z Has data issue: false hasContentIssue false

Colloidal processing and mechanical properties of silicon carbide with alumina

Published online by Cambridge University Press:  31 January 2011

Yoshihiro Hirata
Affiliation:
Department of Applied Chemistry and Chemical Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890, Japan
Kouji Hidaka
Affiliation:
Department of Applied Chemistry and Chemical Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890, Japan
Hiroaki Matsumura
Affiliation:
Department of Applied Chemistry and Chemical Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890, Japan
Yasuo Fukushige
Affiliation:
Department of Applied Chemistry and Chemical Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890, Japan
Soichiro Sameshima
Affiliation:
Department of Applied Chemistry and Chemical Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890, Japan
Get access

Abstract

Submicrometer-sized SiC coated with SiO2 of 0.4–1.8 wt.% and α–Al2O3 powder of median size 0.2 μm were mixed in aqueous solutions in the pH range 3.0–10.0. The SiC/Al2O3 (4.3–6.9 wt. %) powders were consolidated by filtration through gypsum molds and hot-pressed at 1600°–2040 °C under a pressure of 39 MPa. These compacts were densified to near the theoretical density at 1700°–1800 °C. The sintering mechanisms are discussed based on the analysis of shrinkage curves of SiC/Al2O3 compacts during hot-pressing. The equiaxed SiC grains grew with low aspect ratios below 1800 °C and changed to plate-like grains at 1900 °C. The fracture toughness of SiC as a function of average grain size reached a maximum of 5 Mpa · m0.5 at 2.5 μm grains of low aspect ratios of 1–2. The flexural strengths at room temperature were 230–430 MPa in the SiC above 98% of the theoretical density and showed a similar grain size dependence.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kristic, V. D., MRS Bull. XX (2), 4649 (1995).CrossRefGoogle Scholar
2.Shinohara, N., Suzuku, K., and Kuno, T., Reports Res. Lab. Asahi Glass Co., Ltd. 41, 2540 (1991).Google Scholar
3.Suzuki, K. and Sasaki, M., Fundamental Structural Ceramics, edited by S., Sōmiya and Bradt, R. C. (Terra Scientific Publishing Co., Tokyo, Japan, 1987), pp. 7587.Google Scholar
4.Suzuki, K., Bull. Ceram. Soc. Jpn. 21, 590597 (1986).Google Scholar
5.Shinozaki, S. S., Hangas, J., Carduner, K. R., Rokosz, M. J., Suzuki, K., and Shinohara, N., J. Mater. Res. 8, 16351643 (1993).CrossRefGoogle Scholar
6.Shinozaki, S. S., MRS Bull. XX (2), 4245 (1995).CrossRefGoogle Scholar
7.Wang, L. and C.Wei, W., J. Ceram. Soc. Jpn. 103, 434443 (1995).CrossRefGoogle Scholar
8.Whitman, P. K. and Feke, D. L., J. Am. Ceram. Soc. 71, 10861093 (1988).CrossRefGoogle Scholar
9.Hirata, Y., Yamada, S., and Fukushige, Y., Mater. Lett. 16, 295299 (1993).CrossRefGoogle Scholar
10.Aksay, I. A., Lange, F. F., and Davis, B. I., J. Am. Ceram. Soc. 66, C190 (1983).CrossRefGoogle Scholar
11.Lange, F. F., Davis, B. I., and Wright, E., J. Am. Ceram. Soc. 69, 6669 (1986).CrossRefGoogle Scholar
12.Hirata, Y., Aksay, I. A., Kurita, R., Hori, S., and Kaji, H., Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, edited by Davis, R. F., Pask, J. A., and S., Sōmiya (The American Ceramic Society, Westerville, OH, 1990), pp. 323328.Google Scholar
13.Pugh, R. J., Surface and Colloid Chemistry in Advanced Ceramics Processing, edited by Pugh, R. J. and L., Bergström (Marcel Dekker, New York, 1994), pp. 127192.Google Scholar
14.Singhal, S. C. and Lange, F. F., J. Am. Ceram. Soc. 58, 433435 (1975).CrossRefGoogle Scholar
15.Lange, F. F., J. Mater. Sci. 10, 314320 (1975).CrossRefGoogle Scholar
16.Hirata, Y. and Hidaka, K., Proc. Int. Symp. on Environmental Issues of Ceramics, edited by Yanagida, H. and Yoshimura, M.,Ceram. Soc. Jpn. (1995), pp. 264272.Google Scholar
17.Kawamura, T., Mineralogical J. 4, 333355 (1965).Google Scholar
18.Hase, T. and Suzuki, H., J. Ceram. Soc. Jpn. 88, 162168 (1980).Google Scholar
19.Aksay, I. A. and Pask, J. A., J. Am. Ceram. Soc. 58, 507512 (1975).CrossRefGoogle Scholar
20.Hirata, Y., Nakagama, S., and Ishihara, Y., J. Mater. Res. 5, 640646 (1990).CrossRefGoogle Scholar
21.Rahaman, M. N., Boiteux, Y., and De Jonghe, L. C., Am. Ceram. Soc. Bull. 65, 11711176 (1986).Google Scholar
22.Bleier, A. and Westmoreland, C. G., J. Am. Ceram. Soc. 74, 31003111 (1991).CrossRefGoogle Scholar
23.Hirata, Y., Miyano, K., Sameshima, S., and Kamino, Y., Proc. 2nd Int. Meeting of Pacific Rim Ceramic Societies (1996), in press.Google Scholar
24.Hirata, Y., Miyano, K., Sameshima, S., and Kamino, Y., unpublished.Google Scholar
25.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley, New York, 1976), pp. 474501.Google Scholar
26.Hench, L. L., Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley, New York, 1986), pp. 5264.Google Scholar
27.Hirata, Y., Takeshima, K., and Ishihara, Y., J. Ceram. Soc. Jpn. 100, 353361 (1992).CrossRefGoogle Scholar
28.Hirata, Y., Suekawa, Y., and Shimada, K., J. Ceram. Soc. Jpn. 92, 126134 (1984).Google Scholar