Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T17:27:12.047Z Has data issue: false hasContentIssue false

Cold sintering: Current status and prospects

Published online by Cambridge University Press:  18 July 2017

Jon-Paul Maria
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh 27695, North Carolina, USA
Xiaoyu Kang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh 27695, North Carolina, USA
Richard D. Floyd
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh 27695, North Carolina, USA
Elizabeth C. Dickey
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh 27695, North Carolina, USA
Hanzheng Guo
Affiliation:
Department of Material Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park 16802, Pennsylvania, USA
Jing Guo
Affiliation:
Department of Material Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park 16802, Pennsylvania, USA
Amanda Baker
Affiliation:
Department of Material Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park 16802, Pennsylvania, USA
Shuichi Funihashi
Affiliation:
Department of Material Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park 16802, Pennsylvania, USA; and Murata Mfg. Co., Ltd., Nagaokakyo-shi, Kyoto, Japan
Clive A. Randall*
Affiliation:
Department of Material Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park 16802, Pennsylvania, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This manuscript describes, defines, and discusses the process of cold sintering, which can consolidate a broad set of inorganic powders between room temperature and 300 °C using a standard uniaxial press and die. This temperature range is well below that needed for appreciable bulk diffusion, indicating immediately the distinction from the well-known and thermally driven analogue, allowing for an unconventional method for densifying these inorganic powders. Sections of this report highlight the general background and history of cold sintering, the current set of known compositions that exhibit compatibility with this process, the basic experimental techniques, the current understanding of physical mechanisms necessary for densification, and finally opportunities and challenges to expand the method more generically to other systems. The newness of this approach and the potential for revolutionary impact on traditional methods of powder-based processing warrants this discussion despite a nascent understanding of the operative mechanisms.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Eugene Medvedovski

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Rahaman, M.N.: Sintering of Ceramics (CRC Press, Baca Raton, 2008).Google Scholar
German, R.M.: Sintering Theory and Practice (Wiley, New York City, 1996).Google Scholar
Kang, S-J.L.: Sintering: Densification, Grain Growth, and Microstructure (Butterworth-Heinemann, Oxford, 2005).Google Scholar
Cologna, M., Rashkova, B., and Raj, R.: Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93(11), 3556 (2010).CrossRefGoogle Scholar
Shen, Z., Zhao, Z., Peng, H., and Nygren, M.: Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature 417, 266 (2002).Google Scholar
Chaim, R., Shlayer, A., and Estournes, C.: Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J. Eur. Ceram. Soc. 29(1), 91 (2009).CrossRefGoogle Scholar
Valdez-Nava, Z., Guillemet-Fritsch, S., Tenailleau, C., Lebey, T., Durand, B., and Chane-Ching, J.Y.: Colossal dielectric permittivity of BaTiO3-based nanocrystalline ceramics sintered by spark plasma sintering. J. Electroceram. 22(1–3), 238 (2009).Google Scholar
Elissalde, C., Maglione, M., and Estournes, C.: Tailoring dielectric properties of multilayer composites using spark plasma sintering. J. Am. Ceram. Soc. 90(3), 973 (2007).Google Scholar
Shomrat, N., Baltianski, S., Randall, C.A., and Tsur, Y.: Flash sintering of potassium-niobate. J. Eur. Ceram. Soc. 35(7), 2209 (2015).Google Scholar
Zhao, Z., Buscaglia, V., Bowen, P., and Nygren, M.: Spark plasma sintering of nano-crystalline ceramics. Key Eng. Mater. 264–268, 2297 (2004).Google Scholar
Yamasaki, N., Yanagisawa, K., Nishioka, M., and Kanahara, S.: A hydrothermal hot-pressing method: Apparatus and application. J. Mater. Sci. Lett. 5, 355 (1986).Google Scholar
Guo, J., Guo, H., Baker, A.L., Lanagan, M.T., Kupp, E.R., Messing, G.L., and Randall, C.A.: Cold sintering: A paradigm shift for processing and integration of ceramics. Angew. Chem., Int. Ed. 55(38), 11457 (2016).CrossRefGoogle ScholarPubMed
Guo, H., Baker, A., Guo, J., Randall, C.A., and Johnson, D.: Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99(11), 3489 (2016).Google Scholar
Guo, H., Baker, A., Guo, J., and Randall, C.A.: Protocol for ultralow-temperature ceramic sintering: An integration of nanotechnology and the cold sintering process. ACS Nano 10(11), 10606 (2016).Google Scholar
Guo, H., Guo, J., Baker, A., and Randall, C.A.: Hydrothermal-assisted cold sintering process: A new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Interfaces 8(32), 20909 (2016).Google Scholar
Baker, A., Guo, H., Guo, J., and Randall, C.: Utilizing the cold sintering process for flexible-printable electroceramic device fabrication. J. Am. Ceram. Soc. 99(10), 3202 (2016).CrossRefGoogle Scholar
Guo, J., Baker, A.L., Guo, H., Lanagan, M., and Randall, C.A.: Cold sintering process: A new era for ceramic packaging and microwave device development. J. Am. Ceram. Soc. 7, 1 (2016).Google Scholar
Guo, J., Guo, H., Heidary, D.S.B., Funahashi, S., and Randall, C.A.: Semiconducting properties of cold sintered V2O5 ceramics and Co-sintered V2O5-PEDOT: PSS composites. J. Eur. Ceram. Soc. 37(4), 1529 (2016).CrossRefGoogle Scholar
Guo, J., Berbano, S.S., Guo, H., Baker, A.L., Lanagan, M.T., and Randall, C.A.: Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26(39), 7115 (2016).Google Scholar
Guo, H., Guo, J., Baker, A., and Randall, C.A.: Cold sintering process for ZrO2-based ceramics: Significantly enhanced densification evolution in yttria-doped ZrO2 . J. Am. Ceram. Soc. 100(2), 491 (2016).CrossRefGoogle Scholar
Guo, H., Bayer, T.J.M., Guo, J., Baker, A., and Randall, C.A.: Cold sintering process for 8 mol% Y2O3-stabilized ZrO2 ceramics. J. Eur. Ceram. Soc. 37(5), 2303 (2017).Google Scholar
Kähäri, H., Teirikangas, M., Juuti, J., and Jantunen, H.: Dielectric properties of lithium molybdate ceramic fabricated at room temperature. J. Am. Ceram. Soc. 97(11), 3378 (2014).CrossRefGoogle Scholar
Kähäri, H., Teirikangas, M., Juuti, J., and Jantunen, H.: Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics. J. Am. Ceram. Soc. 98(3), 687 (2015).CrossRefGoogle Scholar
Kähäri, H., Teirikangas, M., Juuti, J., and Jantunen, H.: Room-temperature fabrication of microwave dielectric Li2MoO4–TiO2 composite ceramics. Ceram. Int. 42(9), 11442 (2016).Google Scholar
Randall, C.A., Guo, J., Guo, H., Baker, A., and Lanagan, M.T. (The Penn State Research Foundation, assignee): Cold Sintering Ceramics and Composites. U.S. Provisional Patent Service Number 62/234 (2015).Google Scholar
Funahashi, S., Guo, J., Guo, H., Wang, K., Baker, A.L., Shiratsuyu, K., and Randall, C.A.: Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J. Am. Ceram. Soc. 100(2), 546 (2017).Google Scholar
Berbano, S.S., Guo, J., Guo, H., Lanagan, M.T., and Randall, C.A.: Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J. Am. Ceram. Soc., 100(5), 2123 (2017).CrossRefGoogle Scholar
Induja, I.J. and Sebastian, M.T.: Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process. J. Eur. Ceram. Soc. 37(5), 2143 (2017).CrossRefGoogle Scholar
De Silva, P., Bucea, L., Sirivivatnanon, V., and Moorehead, D.R.: Carbonate binders by “cold sintering” of calcium carbonate. J. Mater. Sci. 42(16), 6792 (2007).CrossRefGoogle Scholar
Yamasaki, N., Tang, W., and Ke, J.: Low-temperature sintering of calcium carbonate by a hydrothermal hot-pressing technique. J. Mater. Sci. Lett. 11(13), 934 (1992).CrossRefGoogle Scholar
Yanagisawa, K., Ioku, K., and Yamasaki, N.: Formation of anatase porous ceramics by hydrothermal hot-pressing of amorphous titania spheres. J. Am. Ceram. Soc. 80(5), 1303 (1997).Google Scholar
Yanagisawa, K., Ioku, K., and Yamasaki, N.: Pore size control of porous silica ceramics by hydrothermal hot-pressing. J. Ceram. Soc. Jpn. 102(1190), 966 (1994).Google Scholar
Xie, Y., Yin, S., Yamane, H., Hashimoto, T., and Sato, T.: Low temperature sintering and color of a new compound Sn1.24Ti1.94O3.66(OH)1.50F1.42 . Solid State Sci. 11(9), 1703 (2009).CrossRefGoogle Scholar
Bouville, F. and Studart, A.R.: Geologically-inspired strong bulk ceramics made with water at room temperature. Nat. Commun. 8, 14655 (2017).Google Scholar
Clark, I.J., Takeuchi, T., Ohtori, N., and Sinclair, D.C.: Hydrothermal synthesis and characterisation of perovskite. J. Mater. Chem. 9(1), 83 (1999).Google Scholar
Hu, M.Z.C., Kurian, V., Payzant, E.A., Rawn, C.J., and Hunt, R.D.: Wet-chemical synthesis of monodispersed barium titanate particles—Hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3 . Powder Technol. 110(1–2), 2 (2000).CrossRefGoogle Scholar
Dutta, P.K., Asiaie, R., Akbar, S.A., and Zhu, W.: Hydrothermal synthesis and dielectric properties of tetragonal BaTiO3 . Chem. Mater. 6(9), 1542 (1994).CrossRefGoogle Scholar
Yoshimura, M., Yoo, S-E., Hayashi, M., and Ishizawa, N.: Preparation of BaTiO3 thin film by hydrothermal electrochemical method. Jpn. J. Appl. Phys. 28(11), 2007 (1989).Google Scholar
Akyıldız, H., Casper, M., Aygün, S., Lam, P., and Maria, J.: Hydrothermal BaTiO3 thin films from nanostructure Ti templates. J. Mater. Res. 26(4), 592 (2011).CrossRefGoogle Scholar
Vakifahmetoglu, C., Anger, J.F., Atakan, V., Quinn, S., Gupta, S., Li, Q., Tang, L., and Riman, R.E.: Reactive hydrothermal liquid-phase densification (rHLPD) of ceramics—A study of the BaTiO3[TiO2] composite system. J. Am. Ceram. Soc. 99, 3893 (2016).CrossRefGoogle Scholar
Hirano, S-I. and Somiya, S.: Hydrothermal reaction sintering of pure Cr2O3 . J. Am. Ceram. Soc. 59(11–12), 534 (1976).Google Scholar
Anagisawa, K., Sasaki, M., Nishioka, M., Ioku, K., and Yamasaki, N.: Preparation of sintered compacts of anatase by hydrothermal hot-pressing. J. Mater. Sci. Lett. 13, 765 (1994).CrossRefGoogle Scholar
Dargatz, B., Gonzalez-Julian, J., Bram, M., Jakes, P., Besmehn, A., Schade, L., Röder, R., Ronning, C., and Guillon, O.: FAST/SPS sintering of nanocrystalline zinc oxide-part I: Enhanced densification and formation of hydrogen-related defects in presence of adsorbed water. J. Eur. Ceram. Soc. 36(5), 1207 (2016).Google Scholar
Haynes, W.M.: CRC Handbook of Chemistry and Physics, 97th ed. (CRC Press, Boca Raton, 2016).Google Scholar
Van Santen, R.A.: The Ostwald step rule. J. Phys. Chem. 88(6), 5768 (1984).Google Scholar
Velegol, D., Garg, A., Guha, R., Kar, A., and Kumar, M.: Origins of concentration gradients for diffusiophoresis. Soft Matter 12(21), 4686 (2016).Google Scholar
Senda, T. and Bradt, R.C.. Grain growth in sintered ZnO and ZnO–Bi2O3 ceramics. J. Am. Ceram. Soc. 1, 106 (1990).CrossRefGoogle Scholar
Vandiver, P.B., Soffer, O., Klima, B., Svoboda, J., Vandiver, P.B., Soffer, O., Klima, B., and Svoboda, J.: The origins of ceramic technology at dolni věstonice, czechoslovakia. Science 246(4933), 1002 (2017).CrossRefGoogle Scholar