Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T21:56:39.953Z Has data issue: false hasContentIssue false

The coexistence of silicon borides with boron-saturated silicon: Metastability of SiB3

Published online by Cambridge University Press:  31 January 2011

T. L. Aselage
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-1421
Get access

Extract

The silicon-rich end of the Si-B phase diagram, defining the silicon boride(s) that coexist in equilibrium with boron-saturated silicon, is poorly known. Understanding this equilibrium has implications for the processing of p+ silicon wafers, whose boron concentrations are near the solubility limit. Additionally, silicon boride precipitates produced by boron-ion-implantation and annealing of crystalline silicon have recently been shown to be efficient internal getters of transition metal ions. The experiments described in this paper probe the stability of these silicon borides. A phase with a boron-carbide-like structure, SiB3, grows from boron-saturated silicon in both the solid and the liquid state. However, SiB3 is not found to be stable in either circumstance. Rather, SiB3 is a metastable phase whose formation is driven by the relative ease of its nucleation and growth. The silicon boride that exists in stable equilibrium with boron-saturated silicon is SiB6. A qualitative understanding of the metastability of SiB3 comes from recognizing the conflict between the bonding requirements of icosahedral borides such as SiB3 and the size mismatch between silicon and boron atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Armigliato, A., Nobili, D., Otoja, P., Servidori, M., and Solmi, S., in Semiconductor Silicon 1977, edited by Huff, H. R. and Sirtl, E. (Electrochemical Society, Princeton, 1977), p. 638.Google Scholar
2.Nobili, D., in Properties of Silicon, EMIS Datareviews Series No. 4 (INSPEC, New York, 1988), pp. 384385.Google Scholar
3.Myers, S. M., Petersen, G. A., Headley, T. J., Michael, J. R., Aselage, T. L., and Seager, C. H., Nucl. Instrum. Methods B 127/128, 291 (1997).CrossRefGoogle Scholar
4.Headley, T. J., Michael, J. R., Myers, S. M., Peterson, G. A., and Aselage, T. L., in Microscopy and Microanalysis, edited by Bailey, G. W.et al. (Springer, Berlin, 1997), p. 455.Google Scholar
5.Olesinski, R. W. and Abbaschian, G. J., Bull. Alloy Phase Diagrams 5, 478 (1984).CrossRefGoogle Scholar
6.Dirkx, R. R. and Spear, K. E., CALPHAD 11, 167 (1987).CrossRefGoogle Scholar
7.Colton, E., Nucl. Eng. 6, 324 (1961).Google Scholar
8.Viala, J. C. and Bouix, J., J. Less-Common Met. 71, 195 (1980).CrossRefGoogle Scholar
9.Armas, B., Male, G., Salanoubat, D., Chatillon, C., and Allibert, M., J. Less-Common Met. 82, 245 (1981).CrossRefGoogle Scholar
10.Vlasse, M., Slack, G. A., Garbauskas, M., Kasper, J. S., and Viala, J. C., J. Solid State Chem. 63, 31 (1986).CrossRefGoogle Scholar
11.Adamsky, R. F., Acta Crystallogr. 11, 744 (1958).CrossRefGoogle Scholar
12.Cline, C. F., J. Electrochem. Soc. 106, 322 (1959).CrossRefGoogle Scholar
13.Knarr, W. A., Ph.D. Thesis, Dept. of Chemistry, University of Kansas, December, 1959.Google Scholar
14.Arabei, B. G., Izv. Akad. Nauk SSSR, Neorg. Mat. 15, 1589 (1979).Google Scholar
15.Emin, D., Physics Today 40, 55 (1987).CrossRefGoogle Scholar
16.Brosset, C. and Magnusson, B., Nature (London) 187, 54 (1960).CrossRefGoogle Scholar
17.Matkovich, V. I., Acta Crystallogr. 13, 679 (1960).CrossRefGoogle Scholar
18.Rizzo, H. F. and Bidwell, L. R., J. Am. Ceram. Soc. 43, 550 (1960).CrossRefGoogle Scholar
19.Magnusson, B. and Brosset, C., Acta Chem. Scand. 16, 449 (1962).CrossRefGoogle Scholar
20.Lundstrom, T. and Bolmgren, H., in Proc. 11th Int. Symp. on Boron, Borides, and Related Compounds, edited by Uno, R. and Higashi, I., Jpn. J. Appl. Phys. Ser. 10, 14 (1994).Google Scholar
21.Colton, E., J. Am. Chem. Soc. 82, 1002 (1959).CrossRefGoogle Scholar
22.Cline, C. F. and Sands, D. E., Nature (London) 185, 456 (1960).Google Scholar
23.Tremblay, R. and Angers, R., Ceram. Int. 15, 73 (1989).CrossRefGoogle Scholar
24.Aselage, T. L. and Tissot, R. G., J. Am. Ceram. Soc. 75, 2207 (1992).CrossRefGoogle Scholar
25.Emsley, J., The Elements, 2nd ed. (Clarendon Press, Oxford, 1991).Google Scholar
26. JCPDS pattern #35-777, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
27. JCPDS pattern #35-809, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
28.Dietze, W. and Amberger, E., Angew. Chem. Internat. Edit. 6, 267 (1967);Google Scholar
Dietze, W., Miller, M., and Amberger, E., Electron Tech. 3, 73 (1970).Google Scholar
29. For a recent discussion, see Dunning, W. J., in Particle Growth in Suspensions, edited by Smith, A. L. (Academic Press, New York, 1973), p. 11; who cites the original reference W. Ostwald, Lehrbuch Allgemeine Chemie (W. Engelmann, Leipzig, 1896–1902), Vol. II ii, p. 444.Google Scholar
30.Longuet-Higgins, H. C. and de, M.Roberts, V., Proc. R. Soc. London, Ser. A 230, 110 (1955).Google Scholar
31.Hawthorne, M. F., in The Chemistry of Boron and its Compounds, edited by Muetterties, E. L. (John Wiley and Sons, New York, 1967), p. 223.Google Scholar
32.Morosin, B., Mullendore, A. W., Emin, D., and Slack, G. A., in Boron-Rich Solids, AIP Conf. Proc., edited by Emin, D., Aselage, T., Beckel, C. L., Howard, I. A., and Wood, C. (American Institute of Physics, New York, 1986), Vol. 140, p. 70.Google Scholar
33.Aselage, T. L., Tallant, D. R., and Emin, D., Phys. Rev. B 56, 3122 (1997).CrossRefGoogle Scholar
34.Higashi, I., Tanaka, T., Kobayashi, K., Ishizawa, Y., and Takami, M., J. Solid-State Chem. 133, 11 (1997).CrossRefGoogle Scholar
35.Kobayashi, M., J. Mater. Sci. 23, 4392 (1988).CrossRefGoogle Scholar
36.Kervalishvili, P. D., Kuteliya, E. R., Dzigrashvili, T. A., Dekanosidze, R. N., and Petrov, V. I., Sov. Phys. Solid State 27, 853 (1985).Google Scholar
37.Mizushima, I., Watanabe, M., Murakoshi, M., Hotta, M., Kashiwagi, M., and Yoshiki, M., Appl. Phys. Lett. 63, 373 (1993).CrossRefGoogle Scholar
38.Okamoto, M., Hashimoto, K., and Takayanagi, K., Appl. Phys. Lett. 70, 978 (1997).CrossRefGoogle Scholar