Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T07:11:54.110Z Has data issue: false hasContentIssue false

CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements

Published online by Cambridge University Press:  18 January 2019

Gang Qin
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
Zibo Li
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
Ruirun Chen*
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China; and State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, 150001, Harbin, China
Huiting Zheng
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
Chenlei Fan
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
Liang Wang
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
Yanqing Su
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
Hongsheng Ding
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
Jingjie Guo
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
Hengzhi Fu
Affiliation:
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, Harbin, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Laves phase plays a positive role in improving the strength of high-entropy alloys (HEAs); Nb and Ti elements have potential to promote Laves phase formation in some HEAs. For improving the strength of the face-centered cubic (FCC) CoCrFeMnNi HEA, a series of (CoCrFeMnNi)100−xNbx (atomic ratio: x = 0, 4, 8, 12, 16) and (CoCrFeMnNi)100−xTix (atomic ratio: x = 0, 2, 4, 6, 8, 12) HEAs were prepared by melting. The effects of Nb and Ti on the microstructure evolution and compressive properties of the CoCrFeMnNi HEAs were investigated. For (CoCrFeMnNi)100−xNbx HEAs, the second-phase (Laves and σ phase) volume fraction increased from 0 to 42%. The yield strength also increased gradually from 202 to 1010 MPa. However, the fracture strain decreased from 60% (no fracture) to 12% with increasing Nb content. For (CoCrFeMnNi)100−xTix HEAs, the yield strength increased from 202 to 1322 MPa. The Laves phase volume fraction also increased from 0 to 27%. However, the fracture strain decreased from 60% (no fracture) to 7.5% with increasing Ti content. Addition of Nb and Ti has a good effect on improving the strength of FCC CoCrFeMnNi HEA.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sun, S.J., Tian, Y.Z., Lin, H.R., Dong, X.G., Wang, Y.H., Zhang, Z.J., and Zhang, Z.F.: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122 (2017).CrossRefGoogle Scholar
Sun, S.J., Tian, Y.Z., Lin, H.R., Yang, H.J., Dong, X.G., Wang, Y.H., and Zhang, Z.F.: Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng., A 712, 603 (2018).CrossRefGoogle Scholar
Ma, Y., Wang, Q., Li, C., Santodonato, L., Feygenson, M., Dong, C., and Liaw, P.K.: Chemical short-range orders and the induced structural transition in high-entropy alloys. Scr. Mater. 64, 144 (2018).Google Scholar
Wu, W.Q., Ni, S., Liu, Y., and Song, M.: Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. J. Mater. Res. 31, 3815 (2016).CrossRefGoogle Scholar
Zhang, Y., Liu, Y., and Li, T.X.: Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 174, 82 (2016).CrossRefGoogle Scholar
Liu, Y., Zhang, Y., Zhang, H., Wang, N.J., Chen, X., Zhang, H.W., and Li, Y.X.: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J. Alloys Compd. 694, 869 (2017).CrossRefGoogle Scholar
Liu, Y., Chen, M., Li, Y.X., and Chen, X.: Microstructure and mechanical performance of AlxCoCrCuFeNi high-entropy alloys. Rare Met. Mater. Eng. 38, 602 (2009).Google Scholar
Liu, X.W., Liu, L., Liu, G., Wu, X.X., Lu, D.H., Yao, J.Q., Jiang, W.M., Fan, Z.T., and Zhang, W.B.: The role of carbon in grain refinement of cast CrFeCoNi high-entropy alloys. Metall. Mater. Trans. A 49, 2151 (2018).CrossRefGoogle Scholar
Lu, Y.P., Dong, Y., Guo, S., Jiang, L., Kang, H.J., Wang, T.M., Wen, B., Wang, Z.J., Jie, J.C., Cao, Z.Q., Ruan, H.H., and Li, T.J.: A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014).CrossRefGoogle ScholarPubMed
Lu, Y.P., Gao, X.Z., Jiang, L., Chen, Z.N., Wang, T.M., Jie, J.C., Kang, H.J., Zhang, Y.B., Guo, S., Ruan, H.H., Zhao, Y.H., Cao, Z.Q., and Li, T.J.: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143 (2017).CrossRefGoogle Scholar
Yao, J.Q., Liu, X.W., Gao, N., Jiang, Q.H., Li, N., Liu, G., Zhang, W.B., and Fan, Z.T.: Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy. Intermetallics 98, 79 (2018).CrossRefGoogle Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 213, 375 (2004).Google Scholar
He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).CrossRefGoogle Scholar
Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., Tikhonovsky, M.A., Oleynik, E.E., Tortika, A.S., and Senkov, O.N.: Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. J. Alloys Compd. 628, 170 (2015).CrossRefGoogle Scholar
Liu, W.H., He, J.Y., Huang, H.L., Wang, H., Lu, Z.P., and Liu, C.T.: Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60, 1 (2015).CrossRefGoogle Scholar
Wang, X.F., Zhang, Y., Qiao, Y., and Chen, G.L.: Novel microstructure and properties of multicomponent CoCrCuFeNiTix, alloys. Intermetallics 15, 357 (2007).CrossRefGoogle Scholar
Huo, W.Y., Zhou, H., Fang, F., Xie, Z.H., and Jiang, J.Q.: Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater. Des. 134, 226 (2017).CrossRefGoogle Scholar
Huo, W.Y., Zhou, H., Fang, F., Zhou, X.F., Xie, Z.H., and Jiang, J.Q.: Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys. J. Alloys Compd. 735, 897 (2018).CrossRefGoogle Scholar
Shun, T.T., Chang, L.Y., and Shiu, M.H.: Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater. Sci. Eng., A 556, 170 (2012).CrossRefGoogle Scholar
Liu, W.H., Lu, Z.P., He, J.Y., Luan, J.H., Wang, Z.J., Liu, B., Liu, Y., Chen, M.W., and Liu, C.T.: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).CrossRefGoogle Scholar
Jiang, H., Jiang, L., Qiao, D.X., Lu, Y.P., Wang, T.M., Cao, Z.Q., and Li, T.J.: Effect of niobium addition on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J. Mater. Sci. Technol. 33, 712 (2016).CrossRefGoogle Scholar
He, F., Wang, Z., Cheng, P., Wang, Q., Li, J.J., Dang, Y.Y., Wang, J.C., and Liu, C.T.: Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 656, 284 (2016).CrossRefGoogle Scholar
Dong, Y., Zhou, K.Y., Lu, Y.P., Gao, X.X., Wang, T.M., and Li, T.J.: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Mater. Des. 57, 67 (2015).CrossRefGoogle Scholar
Ma, S.G. and Zhang, Y.: Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 532, 480 (2012).CrossRefGoogle Scholar
Chen, Q.S., Lu, Y.P., Dong, Y., Wang, T.M., and Li, T.J.: Effect of minor B addition on microstructure and properties of AlCoCrFeNi multi-component alloy. Trans. Nonferrous Met. Soc. China 25, 2958 (2015).CrossRefGoogle Scholar
Zhu, J.M., Zhang, H.F., Fu, H.M., Wang, A.M., Li, H., and Hu, Z.Q.: Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J. Alloys Compd. 497, 52 (2010).CrossRefGoogle Scholar
Zhu, J.M., Fu, H.M., Zhang, H.F., Wang, A.M., Li, H., and Hu, Z.Q.: Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Mater. Sci. Eng., A 527, 7210 (2010).CrossRefGoogle Scholar
Yu, Y., Wang, J., Li, J.S., Kou, H.C., and Liu, W.M.: Characterization of BCC phases in AlCoCrFeNiTix high entropy alloys. Mater. Lett. 138, 78 (2015).CrossRefGoogle Scholar
Chen, J., Niu, P., Liu, Y., Lu, Y.Y., Wang, X.H., Peng, Y.L., and Liu, J.N.: Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. Mater. Des. 94, 39 (2016).CrossRefGoogle Scholar
Li, Z.M., Pradeep, K.G., and Deng, Y.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Otto, F., Dlouhý, A., Pradeep, K.G., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P.: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).CrossRefGoogle Scholar
Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).CrossRefGoogle Scholar
Otto, F., Hanold, N.L., and George, E.P.: Microstructural evolution after thermo mechanical processing in an equiatomic, single-phase CoCrFeMnNi high entropy alloy with special focus on twin boundaries. Intermetallics 54, 39 (2014).CrossRefGoogle Scholar
Chen, X., Sui, Y.W., Qi, J.Q., He, Y.Z., Wei, F.X., Meng, Q.K., and Sun, Z.: Microstructure of Al1.3CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. J. Mater. Res. 11, 32 (2017).Google Scholar
Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L.: Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 253 (2007).CrossRefGoogle Scholar
Tsai, S.W.: Theory of Composites Design (Think Composites Press, San Francisco, 1992).Google Scholar
Zhang, Y., Zhou, Y., Lin, J.,  Chen, G., and   Liaw, P.K.: Solid‐solution phase formation rules for multi‐component alloys. Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
Guo, S., Ng, C., Lu, J., and Liu, C.T.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 645 (2011).CrossRefGoogle Scholar
Tsai, M.H., Tsai, K.Y., Tsai, C.W., Lee, C., Juan, C.C., and Ye, J.W.: Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys. Mater. Res. Lett. 1, 207 (2013).CrossRefGoogle Scholar
Tsai, M.H., Chang, K.C., Li, J.H., Tsai, R.C., and Cheng, A.H.: A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett. 4, 1 (2016).CrossRefGoogle Scholar
Troparevsky, M.C., Morris, J.R., Kent, P.R.C., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 1 (2015).Google Scholar
Yurchenko, N., Stepanov, N., and Salishchev, G.: Laves-phase formation criterion for high-entropy alloys. Met. Sci. J. 33, 17 (2016).Google Scholar
Senkov, O.N. and Miracle, D.B.: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).CrossRefGoogle Scholar
Murty, B.S., Yeh, J.W., and Ranganathan, S.: High Entropy Alloys (Elsevier, London, 2014).Google Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2011).CrossRefGoogle Scholar
Guo, S., Hu, Q., Ng, C., and Liu, C.T.: More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41, 96 (2013).CrossRefGoogle Scholar
Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high entropy alloys. JOM 64, 830 (2012).CrossRefGoogle Scholar
Chen, R.R., Qin, G., Zheng, H.T., Wang, L., Su, Y.Q., Chiu, Y.L., Ding, H.S., Guo, J.J., and Fu, H.Z.: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 144, 129 (2018).CrossRefGoogle Scholar
Qin, G., Xue, W.T., Fan, C.L., Chen, R.R., Wang, L., Su, Y.Q., Ding, H.S., and Guo, J.J.: Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100−xCox high-entropy alloys. Mater. Sci. Eng., A 710, 200 (2018).CrossRefGoogle Scholar
Qin, G., Wang, S., Chen, R.R., Gong, X., Wang, L., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. J. Mater. Sci. Technol. 34, 365 (2018).CrossRefGoogle Scholar
Feng, R., Gao, M.C., Lee, C., Mathes, M., Zuo, T.T., Chen, S.Y., Hawk, J.A., Zhang, Y., and Liaw, P.K.: Design of light-weight high-entropy alloys. Entropy 18, 333 (2016).CrossRefGoogle Scholar
Zhang, Y., Lu, Z.P., Ma, S.G., Liaw, P.K., Tang, Z., Cheng, Y.Q., and Gao, M.C.: Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 42, 57 (2014).CrossRefGoogle Scholar
Chanda, B. and Das, J.: Composition dependence on the evolution of nanoeutectic in CoCrFeNiNbx (0.45 ≤ x ≤ 0.65) high entropy alloys. Adv. Eng. Mater. 20, 1700908 (2018).CrossRefGoogle Scholar