Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:21:39.507Z Has data issue: false hasContentIssue false

Citrate-nitrate gel transformation behavior during the synthesis of combustion-derived NiO-yttria-stabilized zirconia composite

Published online by Cambridge University Press:  31 January 2011

Marjan Marinšek
Affiliation:
University of Ljubljana, Askerceva Cesta 005, 1000 Ljubljana, Slovenia (Received 6 February 2003; accepted 1 April 2003)
Klementina Zupan
Affiliation:
University of Ljubljana, Askerceva Cesta 005, 1000 Ljubljana, Slovenia (Received 6 February 2003; accepted 1 April 2003)
Jadran Maček
Affiliation:
University of Ljubljana, Askerceva Cesta 005, 1000 Ljubljana, Slovenia (Received 6 February 2003; accepted 1 April 2003)
Get access

Abstract

NiO-yttria-stabilized zirconia powder mixtures were prepared from reactive citrate-nitrate gels using the combustion technique. The influence of the fuel/oxidant molar ratio in the precursor on the combustion rate and its thermal characteristics was studied by thermal analysis and evolved gas analysis. It was found that the precursor thermal decomposition properties depended strongly on the citrate/nitrate ratio prior to the combustion. Intermediate precursors and final powder ashes were also analyzed by x-ray diffraction.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ring, T.A., Fundamentals of Ceramic Powder Processing and Synthesis (Academic Press, San Diego, CA, 1995), pp. 139–178.Google Scholar
2.Cousin, P. and Ross, R.A., Mater. Sci. Eng. A130, 119 (1990).Google Scholar
3.Livage, J., Henry, M., and Sanches, C., Sol-Gel Chemistry of Transition Metal Oxides (Pergamon Press, 1988), Vol. 18, pp. 259–286.Google Scholar
4.Johnson, W. Jr., Ceram. Bull. 64, 1597 (1985).Google Scholar
5.Brinker, C.J. and Sherer, G.W., Sol-Gel Processing (Academic Press, Inc., San Diego, CA, 1990), pp. 3637, 127–130, and 236–262.Google Scholar
6.Controlled Particle, Droplet and Bubble Formation, edited by Wedlock, D.J. (Butterworth-Heinemann Ltd, Oxford, U.K., 1994), pp. 1–38.Google Scholar
7.Vidyasagar, K., Gopalakrishnan, J., and Rao, N.R., Inorg. Chem., 23, 1206 (1984).Google Scholar
8.Schwertfeger, F., Emmerling, A., Gross, J., and Schubert, U., Organically Modified Silica Aerogels (Proc. Int. Symp. Adv. Sol-Gel Process. Appl., Plenum, New York, 1993), pp. 343–349.Google Scholar
9.Schubert, U., J. Chem. Soc. Dalton Trans. 16, 3343 (1996).CrossRefGoogle Scholar
10.Bilger, S., Blass, G., and Forthmann, R., J. Eur. Ceram. Soc., 17, 1027 (1997).Google Scholar
11.Furusaki, A., Konno, H., and Furuichi, R., J. Mater. Sci. 30, 2829 (1995).Google Scholar
12.Sale, F.R., Metall. Mater. Technol. 9, 439 (1977).Google Scholar
13.Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Reports 3, 277 (1989).CrossRefGoogle Scholar
14.Venkatachari, K.R., Huang, D., Ostrander, S.P., Schulze, W.A., and Stangle, G.C., J. Mater. Sci. 10, 748 (1995).Google Scholar
15.Kingsley, J.J., Suresh, K., and Patil, K.C., J. Solid State Chem. 88, 435 (1990).Google Scholar
16.Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., and Exarhos, G.J., Mater. Lett. 10, 6 (1990).CrossRefGoogle Scholar
17.Pederson, L.R., Maupin, G.D., Weber, W.J., McReady, D.J., and Stephens, R.W., Mater. Lett. 10, 437 (1991).Google Scholar
18.Kingsley, J.J. and Pederson, L.R., Mater. Lett. 18, 89 (1993).CrossRefGoogle Scholar
19.Courty, P., Ajot, H., Marcilly, C., and Delmon, B., Powder Technol. 7, 21 (1973).CrossRefGoogle Scholar
20.Hennings, D. and Mayr, W., J. Solid State Chem. 26, 329 (1978).Google Scholar
21.Anderton, D.J. and Sale, F.R., Powder Metallurgy, Group Meet (Met. Soc., London, U.K., 1978) Paper 16, 21.Google Scholar
22.Baythoun, M.S.G. and Sale, F.R., J. Mater. Sci. 17, 2757 (1982).Google Scholar
23.Sale, F.R. and Mahloojchi, F., Ceram. Int. 14, 229 (1988).Google Scholar
24.Wang, H.W., Hall, D.A., and Sale, F.R., J. Amer. Ceram. Soc. 75, 124 (1992).Google Scholar
25.Fransaer, J., Roos, R., Delaey, L., Biest, O. Van Der, Arkens, O., and Celis, P., Appl. Phys. 65, 3277 (1989).Google Scholar
26.Chen, H.F., Koo, H.S., and Tseng, T.Y., J. Am. Ceram. Soc. 75, 96 (1992).CrossRefGoogle Scholar
27.Wang, H.W., Hall, D.A., and Sale, F.R., J. Therm. Anal. 41, 605 (1994).Google Scholar
28.Wang, H.W., Hall, D.A., and Sale, F.R., J. Therm. Anal. 42, 823 (1994).CrossRefGoogle Scholar
29.M.Jain, S.R., Adiga, K.C., and Verneker, V.R. Pai, Combust. Flame 40, 71 (1981).CrossRefGoogle Scholar
30.Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).Google Scholar
31.Ringuede, A., Frade, J.R., and Labrincha, J.A., Ionics 6, 273 (2000).Google Scholar
32.Aruna, S.T., Muthuraman, M., Patil, K.C., Solid State Ionics 111, 45 (1998).Google Scholar
33.Kim, S.J., Jung, C.H., and Kim, Y.S., Processings of the 2nd European Solid Oxide Fuel Cell Forum (Druckerei J. Kinzel, Göttingen, Germany, 1996), pp. 321330.Google Scholar
34.Klug, H.P. and Alexander, L.E., 2nd ed. (John Wiley & Sons, New York, 1974), Chap. 9, pp. 618–705.Google Scholar