Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T07:26:33.916Z Has data issue: false hasContentIssue false

Chromium implantation in silica glass

Published online by Cambridge University Press:  31 January 2011

E. Cattaruzza
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica and Consorzio Interuniversitario Nazionale per la Chimica dei Materiali (INCM), via Loredan 4, and Unità dell'Istituto Nazionale per la Fisica della Materia (INFM), Dipartimento di Fisica, via Marzolo 8, 35131 Padova, Italy
R. Bertoncello
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica and Consorzio Interuniversitario Nazionale per la Chimica dei Materiali (INCM), via Loredan 4, 35131 Padova, Italy
F. Trivillin
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica and Consorzio Interuniversitario Nazionale per la Chimica dei Materiali (INCM), via Loredan 4, 35131 Padova, Italy
P. Mazzoldi
Affiliation:
Unità dell'Istituto Nazionale per la Fisica della Materia (INFM), Dipartimento di Fisica, via Marzolo 8, 35131 Padova, Italy
G. Battaglin
Affiliation:
Unità dell'Istituto Nazionale per la Fisica della Materia (INFM), Dipartimento di Chimica Fisica, Calle Larga Santa Marta 2137, 30123 Venezia, Italy
L. Mirenghi
Affiliation:
PA.S.T.I.S.-CNRSM (Parco Scientifico e Tecnologico Ionico-Salentino), strada statale 7 Appia km 71300, 72100 Brindisi, Italy
P. Rotolo
Affiliation:
PA.S.T.I.S.-CNRSM (Parco Scientifico e Tecnologico Ionico-Salentino), strada statale 7 Appia km 71300, 72100 Brindisi, Italy
Get access

Abstract

Silica glass was implanted with chromium at the energy of 35 and 160 keV and at fluences varying from 1 × 1016 to 11 × 1016 ions cm−2. In a set of chromium-implanted samples significant amounts of carbon were detected. Samples were characterized by x-ray photoelectron spectroscopy, x-ray-excited Auger electron spectroscopy, secondary ion mass spectrometry, and Rutherford backscattering spectrometry. Chromium silicide and chromium oxide compounds were observed; the presence of carbon in the implanted layers induces the further formation of chromium carbide species. Thermodynamic considerations applied to the investigated systems supply indications in agreement with the experimental evidences.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arnold, G. W. and Mazzoldi, P., in Ion Beam Modifications of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, Amsterdam, 1987), p. 222 and references therein.Google Scholar
2.Weeks, R. A., in Glasses and Amorphous Materials, edited by Zarzycki, J. (VCH, Weinheim, 1991), p. 331 and references therein.Google Scholar
3.Mazzoldi, P., Arnold, G. W., Battaglin, G., Bertoncello, R., and Gonella, F., Nucl. Instrum. Methods B91, 478 (1994) and references therein.CrossRefGoogle Scholar
4.Battaglin, G., in Modifications Induced by Irradiation of Glasses, edited by Mazzoldi, P. (Elsevier, Amsterdam, 1992), p. 11 and references therein.CrossRefGoogle Scholar
5.Carnera, A., Mazzoldi, P., Boscolo-Boscoletto, A., Caccavale, F., Bertoncello, R., Granozzi, G., Spagnol, I., and Battaglin, G., J. Non-Cryst. Solids 125, 293 (1990).CrossRefGoogle Scholar
6.Tagami, T., Oyoshi, K., and Tanaka, S., in Processing and Characterization of Materials Using Ion Beams, edited by Rehn, L. E., Greene, J., and Smidt, F. A. (Mater. Res. Soc. Symp. Proc. 128, Pittsburgh, PA, 1989), p. 519 and in Beam-Solid Interactions: Physical Phenomena, edited by J. A. Knapp, P. Borgesen, and R. A. Zuhr (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 149.Google Scholar
7.Arnold, G. W., Brow, R. K., and Myers, D. R., J. Non-Cryst. Solids 120, 234 (1990).CrossRefGoogle Scholar
8.Oyoshi, K., Tagami, T., and Tanaka, S., J. Appl. Phys. 68, 3653 (1990).CrossRefGoogle Scholar
9.Hosono, H., Abe, Y., Oyoshi, K., and Tanaka, S., Phys. Rev. B 43, 1193 (1991).CrossRefGoogle Scholar
10.Mazzoldi, P., Carnera, A., Caccavale, F., Favaro, M. L., Boscolo-Boscoletto, A., Granozzi, G., Bertoncello, R., and Battaglin, G., J. Appl. Phys. 70, 3528 (1991).CrossRefGoogle Scholar
11.Hosono, H., Nucl. Instrum. Methods B65, 375 (1992).CrossRefGoogle Scholar
12.Battaglin, G., Boscolo-Boscoletto, A., Caccavale, F., De Marchi, G., Mazzoldi, P., and Arnold, G. W., in Modifications Induced by Irradiation of Glasses, edited by Mazzoldi, P. (Elsevier, Amsterdam, 1992), p. 91.CrossRefGoogle Scholar
13.Magruder, R. H. III, White, C. W., Zuhr, R. A., Yang, Lena, Dorsinville, R., and Alfano, R. R., Nucl. Instrum. Methods B91, 493 (1994) and references therein.Google Scholar
14.Bertoncello, R., Glisenti, A., Granozzi, G., Battaglin, G., Cattaruzza, E., and Mazzoldi, P., in Materials Modification by Energetic Atoms and Ions, edited by Grabowski, K. S., Barnett, S. A., Rossnagel, S. M., and Wasa, K. (Mater. Res. Soc. Symp. Proc. 268, Pittsburgh, PA, 1992), p. 325.Google Scholar
15.Bertoncello, R., Glisenti, A., Granozzi, G., Battaglin, G., Caccavale, F., Cattaruzza, E., and Mazzoldi, P., J. Non-Cryst. Solids 162, 205 (1993).CrossRefGoogle Scholar
16.Thermochemical Properties of Inorganic Substances, 2nd ed., edited by Knacke, O., Kubaschewski, O., and Hesselmann, K. (Springer-Verlag, Berlin, Heidelberg, 1991).Google Scholar
17.Hosono, H. and Weeks, R., Phys. Rev. B 40, 10543 (1989).CrossRefGoogle Scholar
18.Whichard, G. and Weeks, R. A., J. Non-Cryst. Solids 112, 1 (1989).CrossRefGoogle Scholar
19.Hosono, H., Weeks, R. A., Imagawa, H., and Zuhr, R. A., J. Non-Cryst. Solids 120, 250 (1990).CrossRefGoogle Scholar
20.Magruder, R. H. III, Morgan, S. H., Weeks, R. A., and Zuhr, R. A.J. Non-Cryst. Solids 120, 241 (1990).CrossRefGoogle Scholar
21.Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
22.Briggs, D. and Seah, M. P., Practical Surface Analysis (J. Wiley & Sons, Chichester, U.K., 1983).Google Scholar
23.X-ray Photoelectron Spectroscopy Database, version 1.0 (National Institute of Standards and Technology, Gaithersburg, MD 20899, 1989).Google Scholar
24.Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. (Perkin-Elmer Corp., Eden Prairie, MN, 1992).Google Scholar
25.Koenig, M. F. and Grant, J. T., Surf. Interf. Anal. 7, 217 (1985).CrossRefGoogle Scholar
26.Shirley, D. A., Phys. Rev. 55, 4709 (1972).CrossRefGoogle Scholar
27.Yeh, J. J. and Lindau, I., Atomic Data and Nuclear Data Tables 32, 1 (1985).CrossRefGoogle Scholar
28.Ottaviani, G., Thin Solid Films 140, 3 (1986).CrossRefGoogle Scholar
29.Wetzel, P., Pirri, C., Peruchetti, J. C., Bolmont, D., and Gewinner, G., Phys. Rev. B 35, 5880 (1987).CrossRefGoogle Scholar
30.Haderbache, L., Wetzel, P., Pirri, C., Peruchetti, J. C., Bolmont, D., and Gewinner, G., Surf. Sci. 209, L139 (1989).CrossRefGoogle Scholar
31.Maury, F. and Ossola, F., Thin Solid Films 207, 82 (1992).CrossRefGoogle Scholar
32.Sorarù, G. D., Glisenti, A., Granozzi, G., Babonnea, F., and Mackenzie, J. D., J. Mater. Sci. 5, 1958 (1990).Google Scholar
33.Mazzoldi, P., Caccavale, F., Cattaruzza, E., Boscolo-Boscoletto, A., Bertoncello, R., Glisenti, A., Battaglin, G., and Gerardi, C., Nucl. Instrum. Methods B65, 367 (1992).Google Scholar
34.Bertoncello, R., Trivillin, F., Cattaruzza, E., Mazzoldi, P., Arnold, G. W., Battaglin, G., and Catalano, M., J. Appl. Phys. 77 (3), 1294 (1995).CrossRefGoogle Scholar