Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:40:57.079Z Has data issue: false hasContentIssue false

Chemical vapor deposition synthesis and characterization of co-deposited silicon–nitrogen–boron materials

Published online by Cambridge University Press:  31 January 2011

A. Essafti
Affiliation:
Département de Physique, Faculté des Sciences Semlalia, B.P. S15, Université Cadi Ayyad, Marrakech, Morocco
C. Gómez-Aleixandre
Affiliation:
Instituto de Ciencia de Materiales, CSIC, Universidad Autønoma, C. 12, Cantoblanco, 28049 Madrid, Spain
J. L. G. Fierro
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain
M. Fernández
Affiliation:
Instituto de Ciencia de Materiales, CSIC, Universidad Autønoma, C. 12 Cantoblanco, 28049 Madrid, Spain
J. M. Albella
Affiliation:
Instituto de Ciencia de Materiales, CSIC, Universidad Autønoma, C. 12 Cantoblanco, 28049 Madrid, Spain
Get access

Abstract

Si–N–B films have been deposited by LPCVD from SiH4/B2H6/NH3 gas mixtures. The influence of the temperature and the composition of the gas mixture on the deposition process and film properties has been investigated. At 1000 °C, for the highest ammonia flow rate (SiH4 :B2H6 : NH3, 10 : 25 : 500), a mixture of turbostratic boron nitride and silicon nitride was deposited. For decreasing ammonia flow rates the Si–N–B ternary system was formed (1260 cm−1 band in the infrared spectra), which co-exists with the unstable turbostratic boron nitride structure. Finally, for a low NH3 flow rate of 100 sccm, stable amorphous films are obtained. On the other hand, at 800 °C, stable films with a high content in the ternary Si–N–B compound were obtained for a wide range of ammonia concentrations (100–500 sccm). At this temperature (800 °C), the composition of the films, as measured by Auger and photoelectron spectroscopies, strongly depends on the [SiH4]/[B2H6] ratio in the gas mixture. The improvement in the mechanical and chemical properties of the samples has been associated with the increase in the content of Si–N bonds in the Si–N–B films.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rand, M. J. and Roberts, J.F., J. Electrochem. Soc. 115, 423 (1968).CrossRefGoogle Scholar
2. Yoshihara, H., Onodera, A., Suito, K., Nakae, H., Matsunami, Y., and Hirai, T., J. Mater. Sci. 25, 4595 (1990).CrossRefGoogle Scholar
3. Gómez-Aleixandre, C., Diaz, D., Orgaz, F., and Albella, J. M., J. Phys. Chem. 97, 11043 (1993).CrossRefGoogle Scholar
4. Gómez-Aleixandre, C., Essafti, A., Fernández, M., Fierro, J.L. G., and Albella, J.M., J. Phys. Chem. 100, 2148 (1996).CrossRefGoogle Scholar
5. Maeda, M. and Makino, T., Jpn. J. Appl. Phys. 26, 660 (1987).CrossRefGoogle Scholar
6. Neureither, B., Basa, C., Sadwick, T., and Blumenstock, K., J. Electrochem. Soc. 140, 3607 (1993).CrossRefGoogle Scholar
7. Hirai, T., Goto, T., and Sakai, T., in Emergent Process Methods for High-Technology Ceramics, Materials Science Research Vol. 17, edited by Davis, R. F., Palmour, H., and Porter, R. L. (Plenum Press, New York, 1984), p. 347.CrossRefGoogle Scholar
8. Mazdiyasni, K. S. and Ruh, R., J. Am. Ceram. Soc. 64, 415 (1981)CrossRefGoogle Scholar
9. Fukunaga, T., Goto, T., Misawa, M., Hirai, T., and Suzuki, K. J. Non-Cryst. Solids 95/96, 1119 (1987).CrossRefGoogle Scholar
10. Besmann, T.M., J. Am. Ceram. Soc. 69, 69 (1986).CrossRefGoogle Scholar
11. Hollander, J. M., Hendrickson, D.N., and Jolly, W. L., Chem, J. Phys. 49, 3315 (1968).Google Scholar
12. Gómez-Aleixandre, C., Sanchez, O., and Albella, J.M., in Proc 9th Int. Symp. on Plasma Chemistry, Vol. II, Bari, Italy (1989) p. 1241.Google Scholar
13. Miyamoto, H., Hirose, M., and Osaka, Y., Jpn. J. Appl. Phys. 22, L216 (1983).CrossRefGoogle Scholar
14. Goto, T. and Hirai, T., J. Mater. Sci. Lett. 7, 548 (1988).CrossRefGoogle Scholar
15. Wagner, C. D., Riggs, W. M., Davis, L. E., Moalder, J. F., and Muilenberg, G. E., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Physical Electronics Division, Eden Prairie, MN, 1979).Google Scholar
16. Adams, A. C. and Capio, C. D., J. Electrochem. Soc. 127, 399 (1980).CrossRefGoogle Scholar