Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T07:45:56.012Z Has data issue: false hasContentIssue false

Chemical vapor deposition of cobalt using novel cobalt(I) precursors

Published online by Cambridge University Press:  31 January 2011

Hyungsoo Choi*
Affiliation:
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
Sungho Park
Affiliation:
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
Ho G. Jang
Affiliation:
Division of Chemistry and Molecular Engineering, Korea University, Seoul, Korea
*
a) Address all correspondence to this author.
Get access

Abstract

The deposition of cobalt thin films from cobalt hydride complexes, HCo[P(OR)3]4, where R = methyl, ethyl, i-propyl, and n-butyl, by a chemical vapor deposition method is reported. The new cobalt precursors deposited high-purity cobalt films at substrate temperatures as low as 300 °C without employing hydrogen. The deposited Co films showed smooth and dense surface morphology. The microstructure and growth rate of the deposited films depended on the reaction conditions such as substrate temperature and precursor feed. No gas phase reactions were observed during the deposition process.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maex, K., Lauwers, A., Besser, P., Kondoh, E., Potter, M. de, and Steegen, A., IEEE Trans. Electron Devices 46, 1545 (1999); K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, Y. Tada, T. Nakamura, T. Yamazaki, and T. Sugii, IEEE Trans. Electron Devices 46, 117 (1999).CrossRefGoogle Scholar
2.Lindsay, R., Lauwers, A., Potter, M. de, Roelandts, N., Vrancken, C., and Maex, K., Microelectron. Eng. 55, 157 (2001).CrossRefGoogle Scholar
3.Biró, L.P., Molnár, G., Szabó, I., Vértesy, Z., Horváth, Z.E., Gyulai, J., Kónya, Z., Piedigrosso, P., Fonseca, A., Nagy, J.B., and Thiry, P.A., Appl. Phys. Lett. 76, 706 (2000).Google Scholar
4.Mao, J.M., Sun, L.F., Qian, L.X., Pan, Z.W., Chang, B.H., Zhou, W.Y., Wang, G., and Xie, S.S., Appl. Phys. Lett. 72, 3297 (2000).CrossRefGoogle Scholar
5.Shah, S.A., Rotkina, L., Choi, H., and Lyding, J.W., Abstract Book, American Vacuum Society 47th International Symposium, Boston, MA, October, 2000, p. 44.Google Scholar
6.Gross, M.E., Kranz, K.S., Brasen, D., and Luftman, H.J., Vac. Sci. Technol. B 6, 1548 (1988).CrossRefGoogle Scholar
7.Maruyama, T., Jpn. J. Appl. Phys. 36, L705 (1997).CrossRefGoogle Scholar
8. G.Dormans, J.M., Meekes, G.J.B.M., and Staring, E.G.J., J. Crystal Growth 114, 364 (1991).CrossRefGoogle Scholar
9.Lane, P.A., Oliver, P.E., Wright, P.J., Reeves, C.L., Pitt, A.D., and Cockayne, B., Chem. Vap. Deposition 4, 183 (1998).3.0.CO;2-M>CrossRefGoogle Scholar
10.Ivanova, A.R., Nuesca, G., Chen, X., Goldberg, C., Kaloyeros, A.E., Arkles, B., and Sullivan, J.J., J. Electrochem. Soc. 146, 2139 (1999).CrossRefGoogle Scholar
11.Baev, A.K., Gubar, Yu.L., and Gasanov, K.S., Russ. J. Phys. Chem. 56, 1490 (1982).Google Scholar
12.Mutterties, E.L. and Hirsekorn, F.J., J. Am. Chem. Soc. 96, 7920 (1974).CrossRefGoogle Scholar