Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:14:04.093Z Has data issue: false hasContentIssue false

Chemical bonding characteristics and dielectric properties of Nd2(Ba1−xSrx)ZnO5 solid solutions

Published online by Cambridge University Press:  03 March 2011

Akinori Kan*
Affiliation:
Faculty of Science and Technology, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Hirotaka Ogawa
Affiliation:
Faculty of Science and Technology, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Kenkichi Mori
Affiliation:
Faculty of Science and Technology, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
Hitoshi Ohsato
Affiliation:
Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan
Yoshinori Andou
Affiliation:
Faculty of Science and Technology, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468–8502, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

The relationship between the microwave dielectric property and crystal structure of Nd2(Ba1−xSrx)ZnO5 solid solutions was investigated using bond valence theorem and first principle method (DV-Xα method). The evaluation of the covalence characteristics of cation–oxygen bonds revealed that as the x value increased, the covalence characteristics of the M–O (M = Ba and Sr) bonds in the MO10 polyhedron decreased while those of the Zn–O(2) bonds in the ZnO4 tetrahedron increased. From the DV-Xα method, it was found that the 3d electrons of the Zn2+ ion are closely related to the strong covalence characteristics of the Zn–O(2) bonds. The dielectric constants were approximately constant over the whole composition; this result is considered to relate to the decrease in the covalence characteristic of the M–O bonds. The quality factors increased from 4915 to 25,836 GHz, and the grain growth of the solid solutions are considered to improve the Q × f values.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Penn, S.J., Alford, N.M., Templeton, A., Wang, X., Xu, M., Reece, M., and Schrapel, K., J. Am. Ceram. Soc. 80, 1885 (1997).CrossRefGoogle Scholar
2.Kan, A. and Ogawa, H., J. Mater. Res. 17, 1803 (2002).CrossRefGoogle Scholar
3. A.Kan, Ogawa, H., and Ohsato, H., Jpn. J. Appl. Phys. 41, 7226 (2002).Google Scholar
4.Michel, C. and Raveau, B., J. Solid State Chem. 43, 73 (1982).CrossRefGoogle Scholar
5.Taibi, M., Aride, J., Darriet, J., Moqine, A., and Boukhari, A., J. Solid State Chem. 86, 233 (1990).CrossRefGoogle Scholar
6.Dareys, B., Thurian, P., Taboada, S., Andres, A. De, Dietrich, M., Saez, R.-Puche, Litvinchuk, A.P., Martinez, J.L., and Thomsen, C., J. Lumin. 72–74, 174 (1997).CrossRefGoogle Scholar
7.Kan, A., Ogawa, H., Mori, K., and Sugishita, J., Mater. Res. Bull. 37, 1509 (2002).CrossRefGoogle Scholar
8. H. Rietveld, M., J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
9.Izumi, F., in Rietveld Method, edited by Young, R.A. (Oxford University Press, Oxford, U.K., 1993), Chapter. 13.Google Scholar
10.Hakki, B.W. and Coleman, P.D., IRE Transitions on Microwave, Microwave Theory and Techniques. MTT–8, 402 (1960).CrossRefGoogle Scholar
11.Satoko, C., Tsukada, M., and Adachi, H., J. Phys. Soc. Jpn. 45, 1333 (1978).CrossRefGoogle Scholar
12.Adachi, H., Shiokawa, S., Tsukada, M., Satoko, C., and Sugino, S., J. Phys. Soc. Jpn. 47, 1528 (1979).CrossRefGoogle Scholar
13.Mulliken, R.S., J. Chem. Phys. 23, 1833 (1955).CrossRefGoogle Scholar
14.Tsukada, M., Adachi, H., and Satoko, C., Prog. Surf. Sci. 14, 113 (1983).CrossRefGoogle Scholar
15.Adachi, H., Tsukada, M.S., and Satoko, C., J. Phys. Soc. Jpn. 45, 874 (1978).Google Scholar
16.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
17.Brown, I.D. and Shannon, R.D., Acta Crystallogr. A 29, 266 (1973).CrossRefGoogle Scholar
18.Brown, I.D., Acta Crystallogr. B 48, 553 (1992).CrossRefGoogle Scholar
19.Brown, I.D., Acta Crystallogr. B 32, 1957 (1976).CrossRefGoogle Scholar
20.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
21.Kucheiko, S., Choi, J.W., Kim, H.J., and Jung, H.J., J. Am. Ceram. Soc. 79, 2739 (1996).CrossRefGoogle Scholar
22.Venkatesh, J. and Murthy, V.R.K., Mater. Chem. Phys. 58, 276 (1999).CrossRefGoogle Scholar