Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T11:01:26.279Z Has data issue: false hasContentIssue false

Characterizing mechanical behavior of atomically thin films: A review

Published online by Cambridge University Press:  02 January 2014

Changhong Cao
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, Ontario M5S 3G8, Canada
Yu Sun*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, Ontario M5S 3G8, Canada
Tobin Filleter*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, Ontario M5S 3G8, Canada
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Atomically thin films, such as graphene, graphene oxide, hexagonal-boron nitride (h-BN), and molybdenum disulfide (MoS2), have attracted intensive studies to explore their properties and potential applications as next generation materials due to their outstanding mechanical, electrical, thermal, and optical properties. The study of the mechanical behavior of this class of materials is in particular interesting as it not only physically determines the potential application fields where these materials can be utilized but also has revealed unique mechanical size effects and phenomena. Researchers have been studying the mechanical properties such as elastic modulus, strength, friction, and fracture behavior of atomically thin films for over a decade now. Here, we review recent results of the mechanical characterization and understanding of this class of materials.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183191 (2007).Google Scholar
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282286 (2006).CrossRefGoogle ScholarPubMed
Watcharotone, S., Diking, D.A., Stankovich, S., Pinery, R., Jung, I., Dommett, G.H.B., Evmenenko, G., Wu, S-E., Chen, S-F., Liu, C-P., Nguyen, S.T., and Ruoff, R.S.: Graphene-silica composite thin films as transparent conductors. Nano Lett. 7, 18881892 (2007).Google Scholar
Eda, G. and Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9, 814818 (2009).Google Scholar
Sandoz-Rosado, E.J., Tertuliano, O.A., and Terrell, E.J.: An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings. Carbon 50, 40784084 (2012).CrossRefGoogle Scholar
Kim, K-S., Lee, H-J., Lee, C., Lee, S-K., Jang, H., Ahn, J-H., Kim, J-H., and Lee, H-J.: Chemical vapor deposition-grown graphene: The thinnest solid lubricant. ACS Nano 5, 51075114 (2011).CrossRefGoogle ScholarPubMed
Sungjin, P., Jinho, A., Ji Won, S., and Ruoff, R.S.: Graphene-based actuators. Small 6, 210212 (2010).Google Scholar
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., and Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722726 (2010).CrossRefGoogle ScholarPubMed
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., and Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8, 497501 (2013).CrossRefGoogle ScholarPubMed
Li, N., Chen, Z.P., Ren, W.C., Li, F., and Cheng, H.M.: Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U.S.A. 109, 1736017365 (2012).CrossRefGoogle ScholarPubMed
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Ahn, J.H., Kim, P., Choi, J.Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706710 (2009).Google Scholar
Meng, X., Yang, X-Q., and Sun, X.: Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24, 35893615 (2012).CrossRefGoogle ScholarPubMed
Ci, L., Song, L., Jin, C.H., Jariwala, D., Wu, D.X., Li, Y.J., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., and Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430435 (2010).Google Scholar
Loh, K.P., Bao, Q.L., Eda, G., and Chhowalla, M.: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 10151024 (2010).CrossRefGoogle ScholarPubMed
Lee, C., Wei, X.D., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).Google Scholar
Sutter, P.: Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 8, 171172 (2009).Google Scholar
Tao, L., Lee, J., Holt, M., Chou, H., McDonnell, S.J., Ferrer, D.A., Babenco, M.G., Wallace, R.M., Banerjee, S.K., Ruoff, R.S., and Akinwande, D.: Uniform wafer-scale chemical vapor deposition of graphene on evaporated Cu (111) film with quality comparable to exfoliated monolayer. J. Phys. Chem. C 116, 2406824074 (2012).CrossRefGoogle Scholar
Park, S. and Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217224 (2009).Google Scholar
Geim, A.K.: Graphene: Status and prospects. Science 324, 15301534 (2009).Google Scholar
Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H., and Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770775 (2007).CrossRefGoogle ScholarPubMed
Park, H.J., Meyer, J., Roth, S., and Skákalová, V.: Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 10881094 (2010).Google Scholar
Lee, G-H., Cooper, R.C., An, S.J., Lee, S., van der Zande, A., Petrone, N., Hammerberg, A.G., Lee, C., Crawford, B., Oliver, W., Kysar, J.W., and Hone, J.: High-strength chemical-vapor–deposited graphene and grain boundaries. Science 340, 10731076 (2013).Google Scholar
Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., and Yu, G.: Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 17521758 (2009).CrossRefGoogle ScholarPubMed
Cai, W., Piner, R.D., Stadermann, F.J., Park, S., Shaibat, M.A., Ishii, Y., Yang, D., Velamakanni, A., Sung, J.A., Stoller, M., An, J., Chen, D., and Ruoff, R.S.: Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 18151817 (2008).CrossRefGoogle ScholarPubMed
Zhu, Y.W., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 1045110453 (2005).Google Scholar
Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H-Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., and Nicolosi, V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568571 (2011).CrossRefGoogle ScholarPubMed
Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., and Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano 4, 29792993 (2010).CrossRefGoogle ScholarPubMed
Gao, Y., Ren, W., Ma, T., Liu, Z., Zhang, Y., Liu, W-B., Ma, L-P., Ma, X., and Cheng, H-M.: Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano 7, 51995206 (2013).Google Scholar
Gómez-Navarro, C., Burghard, M., and Kern, K.: Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 20452049 (2008).CrossRefGoogle ScholarPubMed
Suk, J.W., Piner, R.D., An, J., and Ruoff, R.S.: Mechanical properties of monolayer graphene oxide. ACS Nano 4, 65576564 (2010).CrossRefGoogle ScholarPubMed
Espinosa, H.D., Prorok, B.C., and Peng, B.: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667689 (2004).CrossRefGoogle Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., and Muller, D.A.: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389392 (2011).Google Scholar
Ruiz-Vargas, C.S., Zhuang, H.L.L., Huang, P.Y., van der Zande, A.M., Garg, S., McEuen, P.L., Muller, D.A., Hennig, R.G., and Park, J.: Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 22592263 (2011).Google Scholar
Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.H., Crommie, M.F., Cohen, M.L., Louie, S.G., and Zettl, A.: Graphene at the edge: Stability and dynamics. Science 323, 17051708 (2009).Google Scholar
Joyce, S.A. and Houston, J.E.: A new force sensor incorporating force-feedback control for interfacial force microscopy. Rev. Sci. Instr. 62, 710715 (1991).CrossRefGoogle Scholar
Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., and Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457460 (2007).Google Scholar
Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., and Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 32093215 (2010).Google Scholar
Castellanos-Gomez, A., Poot, M., Steele, G.A., van der Zant, H.S.J., Agrait, N., and Rubio-Bollinger, G.: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772 (2012).Google Scholar
Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K., and Bennewitz, R.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 086102 (2009).Google Scholar
Lee, C., Li, Q.Y., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., and Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 7680 (2010).Google Scholar
Ou, J., Wang, J., Liu, S., Mu, B., Ren, J., Wang, H., and Yang, S.: Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 26, 1583015836 (2010).Google Scholar
Wei, Z.Q., Wang, D.B., Kim, S., Kim, S.Y., Hu, Y.K., Yakes, M.K., Laracuente, A.R., Dai, Z.T., Marder, S.R., Berger, C., King, W.P., de Heer, W.A., Sheehan, P.E., and Riedo, E.: Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 13731376 (2010).CrossRefGoogle ScholarPubMed
Kim, K., Artyukhov, V.I., Regan, W., Liu, Y.Y., Crommie, M.F., Yakobson, B.I., and Zettl, A.: Ripping graphene: Preferred directions. Nano Lett. 12, 293297 (2012).CrossRefGoogle ScholarPubMed
Zhang, T., Li, X.Y., Kadkhodaei, S., and Gao, H.J.: Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 12, 46054610 (2012).Google Scholar
Kim, J.S., LaGrange, T., Reed, B.W., Taheri, M.L., Armstrong, M.R., King, W.E., Browning, N.D., and Campbell, G.H.: Imaging of transient structures using nanosecond in situ TEM. Science 321, 14721475 (2008).Google Scholar
Yong, Z., Xinyu, L., Changhai, R., Yan Liang, Z., Lixin, D., and Yu, S.: Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J. Microelectromech. Syst. 20, 959967 (2011).Google Scholar
Li, J., Zhang, Y., To, S., You, L., and Sun, Y.: Effect of nanowire number, diameter, and doping density on Nano-FET biosensor sensitivity. ACS Nano 2011, 5, 66616668 (2011).CrossRefGoogle ScholarPubMed
Espinosa, H.D., Bernal, R.A., and Filleter, T.: In situ TEM electromechanical testing of nanowires and nanotubes. Small 8, 32333252 (2012).Google Scholar
Lee, K.H., Shin, H-J., Lee, J., Lee, I-Y., Kim, G-H., Choi, J-Y., and Kim, S-W.: Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12, 714718 (2012).Google Scholar
Nikolova, L., LaGrange, T., Reed, B.W., Stern, M.J., Browning, N.D., Campbell, G.H., Kieffer, J.C., Siwick, B.J., and Rosei, F.: Nanocrystallization of amorphous germanium films observed with nanosecond temporal resolution. Appl. Phys. Lett. 97, 203102203103 (2010).Google Scholar