Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T04:27:20.665Z Has data issue: false hasContentIssue false

Characterization of yttrium aluminate garnet precursors synthesized via precipitation using ammonium bicarbonate as the precipitant

Published online by Cambridge University Press:  31 January 2011

Ji-Guang Li*
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki 305–0044, Japan
Takayasu Ikegami
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki 305–0044, Japan
Jong-Heun Lee
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki 305–0044, Japan
Toshiyuki Mori
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba, Ibaraki 305–0044, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Stoichiometric yttrium aluminate garnet (Y3Al5O12) precursors with a wide range of chemical compositions were precipitated by dripping a mixed solution of ammonium aluminum sulfate and yttrium nitrate into ammonium bicarbonate solutions. The resultant precursors were characterized by chemical analysis, infrared spectroscopy, differential thermal analysis/thermogravimetry, x-ray diffractometry, and scanning electron microscopy. The effects of reaction temperature, precipitant concentration, dripping speed of the salt solution, and the molar ratio of precipitant/total-cations on the composition, thermal behavior, and particle morphology of the resultant precursors were investigated. The precipitation conditions that yield carbonate precursors composed of ammonium dawsonite [NH4Al(OH)2CO3] and yttrium normal carbonate [Y2(CO3)3 · 3H2O] were determined.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shea, J.E., McKittrick, J., Lopez, O.A., and Sluzky, E., J. Am. Ceram. Soc. 79, 3257 (1996).CrossRefGoogle Scholar
2.Yan, M.F., Huo, T.C.D, and Ling, H.C., J. Electrochem. Soc. 134, 493 (1987).CrossRefGoogle Scholar
3.Ohno, K. and Abe, T., J. Electrochem. Soc. 133, 638 (1986).CrossRefGoogle Scholar
4.Ikesue, A., Kinoshita, T., Kamata, K., and Yoshita, K., J. Am. Ceram. Soc. 78, 1033 (1995).CrossRefGoogle Scholar
5.Corman, G.S., Ceram. Eng. Sci. Proc. 12, 1745 (1991).CrossRefGoogle Scholar
6.Parthasarathy, T.A., Mah, T., and Keller, K., Ceram. Eng. Sci. Proc. 12, 1767 (1991).Google Scholar
7.Parthasarathy, T.A., Mah, T., and Keller, K., J. Am. Ceram. Soc. 75, 1756 (1992).CrossRefGoogle Scholar
8.Cockayne, B., J. Less-Common Met. 144, 119 (1985).Google Scholar
9.Class, W., J. Crystal Growth 3–4, 241 (1963).Google Scholar
10.Glushkova, V.B., Krzhizhanovskaya, V.A., Egorova, O.N., Udalov, Yu.P., and Kachalova, L.P., Inorg. Mater. (USSR) (Engl. Transl.) 19, 80 (1983).Google Scholar
11.Neiman, A.Ya., Tkachenko, E.V., Kvichko, L.A., and Kotok, L.A., Russ. J. Inorg. Chem. 25, 1294 (1980).Google Scholar
12.Yamaguchi, O., Takeoka, K., and Hayashida, A., J. Mater. Sci. Lett. 10, 101 (1991).CrossRefGoogle Scholar
13.Krylov, V.S., Belova, I.L., Magunov, R.L., Kozlov, V.D., Kalinichenko, A.V., and Krotko, N.P., Inorg. Mater. (USSR) (Engl. Transl.) 9, 1233 (1973).Google Scholar
14.Glushkova, V.B., Egorova, O.N., Krzhizhanovskaya, V.A., and Merezhinskii, K. Yu., Inorg. Mater. (USSR) (Engl. Transl.) 19, 1015 (1983).Google Scholar
15.Kinsman, K.M., McKittrick, J., Sluzky, E., and Hesse, K., J. Am. Ceram. Soc. 77, 2866 (1994).CrossRefGoogle Scholar
16.Haneda, H., Watanabe, A., Matsuda, S., Sakai, T., Shirasaki, S., and Yamamura, H., Sintering '87, edited by Somiya, S., Shimada, M., Yoshimura, M., and Watanabe, R. (Elsevier Science Publishers Ltd., Essex, England, 1998), p. 381.Google Scholar
17.Vrolijk, J.W.G.A, Willems, J.W.M.M, and Metselaar, R., J. Eur. Ceram. Soc. 6, 47 (1990).CrossRefGoogle Scholar
18.Sekita, M., Haneda, H., Yanagitani, T., and Shirasaki, S., J. Appl. Phys. 67, 453 (1990).CrossRefGoogle Scholar
19.Matsushita, N., Tsuchiya, N., Nakatsuka, K., and Yanagitani, T., J. Am. Ceram. Soc. 82, 1977 (1999).CrossRefGoogle Scholar
20.Sordelet, D.J., Akinc, M., Panchula, M.L., Han, Y., and Han, M.H., J. Eur. Ceram. Soc. 14, 123 (1994).CrossRefGoogle Scholar
21.Hay, R.S., J. Mater. Res. 8, 578 (1993).CrossRefGoogle Scholar
22.Gowda, G., J. Mater. Sci. Lett. 5, 1029 (1986).CrossRefGoogle Scholar
23.Manalert, R. and Rahaman, M.N., J. Mater. Sci. 31, 3453 (1996).CrossRefGoogle Scholar
24.Liu, Y., Zhang, Z.F., King, B., Halloran, J., and Laine, R.M., J. Am. Ceram. Soc. 79, 385 (1996).CrossRefGoogle Scholar
25.Takamori, T. and David, L.D., Bull. Am. Ceram. Soc. 65, 1282 (1986).Google Scholar
26.Inoue, M., Otsu, H., Kominami, H., and Inui, T., J. Am. Ceram. Soc. 74, 1452 (1991).CrossRefGoogle Scholar
27.Messier, D.R. and Gazza, G.E., Ceram. Bull. 51, 692 (1972).Google Scholar
28.Nyman, M., Caruso, J., Smith, M.J.H, and Kodas, T.T., J. Am. Ceram. Soc. 80, 1231 (1997).CrossRefGoogle Scholar
29.de With, G. and Van Dijk, H.J.A, Mater. Res. Bull. 19, 1669 (1984).Google Scholar
30.Shea, L.E., McKittrick, J., Lopez, O.A., and Sluzky, E., J. Am. Ceram. Soc. 79, 3257 (1996).CrossRefGoogle Scholar
31.Hess, N.J., Maupin, G.D., Chick, L.A., Sunberg, D.S., McCreedy, D.E., and Armstrong, T.R., J. Mater. Sci. 29, 1873 (1994).CrossRefGoogle Scholar
32.Veitch, C.D., J. Mater. Sci. 26, 6527 (1991).CrossRefGoogle Scholar
33.Gazza, G.E. and Dutta, S.K., U.S. Patent No. 3 767 745 (1973).Google Scholar
34.Gazza, G.E. and Dutta, S.K., U.S. Patent No. 4 029 755 (1977).Google Scholar
35.Kaliszewski, M.S. and Heur, A.H., J. Am. Ceram. Soc. 73, 1504 (1990).CrossRefGoogle Scholar
36.Li, J-G., Ikegami, T., Lee, J-H. and Mori, T., J. Mater. Res. 15, 1514 (2000).CrossRefGoogle Scholar
37.Kato, S., Iga, T., Hatano, S., and Isawa, Y., J. Ceram. Soc. Jpn. 84, 215 (1976) [in Japanese].Google Scholar
38.Hayashi, K., Toyoda, S., Nakashima, K., and Morinaga, K., J. Chem. Soc. Jpn. 98, 444 (1990) [in Japanese].Google Scholar
39.Aiken, B., Hsu, W.P. and Matijevic, E., J. Am. Ceram. Soc. 71, 845 (1988).CrossRefGoogle Scholar
40.Sordelet, D.J. and Akinc, M., J. Colloid Interface Sci. 122, 47 (1988).CrossRefGoogle Scholar
41.Holcombe, C.E., J. Am. Ceram. Soc. 61, 481 (1978).CrossRefGoogle Scholar
42.Rasmussen, M.D., Akinc, M., and Hunter, O., Ceram. Int. 11, 51 (1985).CrossRefGoogle Scholar
43.Vrolijk, J.W.G.A, Willems, J.W.M.M, and Metselaar, R., Euro-Ceramics, edited by de With, G., Terpstra, R.A., and Metselaar, R. (Elsevier Applied Science, Essex, England, 1989) Vol. 1, p. 104.Google Scholar
44.Gadsden Aric, J.A., Infrared Spectra of Minerals and Related Inorganic Materials (Butterworths, London, 1975), p. 10.Google Scholar
45.Pullar, R.C., Taylor, M.D., and Bhattacharya, A.K., J. Eur. Ceram. Soc. 19, 1747 (1999).CrossRefGoogle Scholar
46.Hayashi, K., Toyoda, S., Takebe, H., and Morinaga, K., J. Ceram. Soc. Jpn. 99, 550 (1991) [in Japanese].CrossRefGoogle Scholar
47.Saraswati, V., Rao, G.V.N, and Rao, G.V.R, J. Mater. Sci. 22, 2529 (1987).CrossRefGoogle Scholar