Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T11:52:18.386Z Has data issue: false hasContentIssue false

Characterization of the ternary phase at the Sn/Ni–V joint

Published online by Cambridge University Press:  31 January 2011

Chih-chi Chen*
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 300, Taiwan, Republic of China; and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
Sinn-wen Chen
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 300, Taiwan, Republic of China
Chih-horng Chang
Affiliation:
Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 300, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ni–7 wt% V diffusion barrier is commonly used in flip chip technology, and Sn is the primary element of all commercial electronic solders. Different from the interfacial reactions in the Sn/Ni couples, a ternary T phase is formed in the Sn/Ni–7 wt% V couples reacted at temperatures lower than 350 °C. The T phase is a mixture of an amorphous phase and the Ni3Sn4 phase with grains about 50 nm in size. The amorphous phase is composed mainly of Sn and V atoms, and it is formed due to the fast diffusion of Sn and relative immobility of V. Activation energy of the T phase formation is 16.5 kJ/mol, which is approximately 50% of that of the Ni3Sn4 phase determined from the Sn/Ni interfacial reactions. The T phase is no longer formed and the reaction product is the Ni3Sn4 phase in the Sn/Ni–7 wt% V couples reacted at temperatures higher than 350 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lau, J.H.: Flip Chip Technologies McGraw-Hill New York 1995Google Scholar
2Laurila, T., Vuorinen, V., Kivilahti, J.K.: Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng., R 49, 1 2005Google Scholar
3Li, Y., Chen, J., Lazik, C., Wang, P., Yang, L., Yu, J., Sun, T., Ko, E.: Nickel silicon thin film as barrier in under-bump-metallization by magnetron sputtering deposition for Pb-free chip packaging. J. Mater. Res. 20, 2622 2005Google Scholar
4Ho, C.E., Yang, S.C., Kao, C.R.: Interfacial reaction issues for lead-free electronic solders. J. Mater. Sci.-Mater. Electron. 18, 155 2007Google Scholar
5Chen, C-C., Chen, S-W., Kao, C-Y.: Interfacial reactions in the Sn–(Ag)/(Ni,V) couples and phase equilibria of the Sn–Ni–V system at the Sn-rich corner. J. Electron. Mater. 35, 922 2006Google Scholar
6Chen, C-C., Chen, S-W.: The Sn/Ni–7 wt% V interfacial reactions. J. Electron. Mater. 35, 1701 2006Google Scholar
7Chen, S-W., Chen, C-C., Chang, C-H.: Interfacial reactions in Sn/Ni–7 wt% V couple. Scr. Metall. 56, 453 2007Google Scholar
8Chen, S-W., Chen, C-C.: Interfacial reactions in Sn–0.7 wt% Cu/Ni–V couples at 250 °C. J. Electron. Mater. 36, 1121 2007Google Scholar
9Chen, C-C., Chen, S-W., Chang, C-H.: Electromigration effects upon the Sn/Ni–7 wt% V interfacial reactions. J. Appl. Phys. 103, 063518 2008CrossRefGoogle Scholar
10Liu, C.Y., Tu, K.N., Sheng, T.T., Tung, C.H., Frear, D.R., Elenius, P.: Electron microscopy study of interfacial reaction between eutectic SnPb and Cu/Ni(V)/Al thin film metallization. J. Appl. Phys. 87, 750 2000Google Scholar
11Li, M., Zhang, F., Chen, W.T., Zeng, K., Tu, K.N., Balkan, H., Elenius, P.: Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin films. J. Mater. Res. 17, 1612 2002Google Scholar
12Kang, S.K., Ramachandran, V.: Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface. Scr. Metall. 14, 421 1980Google Scholar
13Bader, S., Gust, W., Hieber, H.: Rapid formation of intermetallic compounds by interdiffusion in the Cu–Sn and Ni–Sn systems. Acta Metall. Mater. 43, 329 1994Google Scholar
14Gur, D., Bamberger, M.: Reactive isothermal solidification in the Ni–Sn system. Acta Mater. 46, 4917 1998CrossRefGoogle Scholar
15Kay, P.J., Mackay, C.A.: The growth of intermetallic compounds on common basis materials coated with tin and tin-lead alloys. Trans. Inst. Metal Finish. 54, 68 1976CrossRefGoogle Scholar
16van Beek, J.A., Stolk, S.A., van Loo, J.J. Frans: Multiphase diffusion in the systems Fe–Sn and Ni–Sn. Z. Metallk. 73, 439 1982Google Scholar
17Haimovich, J.: Intermetallic compound growth in tin and tin-lead platings over nickel and its effects on solderability. Welding Res. Suppl. 68(3), 102s 1989Google Scholar
18Lee, C.Y., Lin, K.L.: The interaction kinetics and compound formation between electroless Ni–P and solder. Thin Solid Films 249, 201 1994Google Scholar
19Choi, W.K., Lee, H.M.: Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn–3.5Ag and Ni/Cu substrate. J. Electron. Mater. 28, 1251 1999Google Scholar
20Jang, J.W., Kim, P.G., Tu, K.N., Frear, D.R., Thompson, P.: Solder reaction-assisted crystallization of electroless Ni–P under bump metallization in low cost flip chip technology. J. Appl. Phys. 85, 8456 1999CrossRefGoogle Scholar
21Tomlinson, W.J., Rhodes, H.G.: Kinetics of intermetallic compound growth between nickel, electroless Ni–P, electroless Ni–B and tin at 453 to 493 K. J. Mater. Sci. 22, 1769 1987CrossRefGoogle Scholar
22Jeon, Y-D., Paik, K-W., Bok, K-S., Choi, W-S., Cho, C-L.: Studies on Ni–Sn intermetallic compound and P-rich Ni layer at the electroless nickel UBM-solder interface and their effects on flip chip solder joint reliability in 51st Electronic Components & Technology Conference IEEE Piscataway, NJ 2001 1326Google Scholar
23Choi, W.J., Yeh, E.C.C., Tu, K.N.: Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin film under-bump-metallization. J. Appl. Phys. 94, 5665 2003Google Scholar
24Chen, S-W., Chen, C-M., Liu, W-C.: The electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions. J. Electron. Mater. 27, 1193 1998Google Scholar
25Chen, C-M., Chen, S-W.: Electromigration effect upon the Sn/Ag and Sn/Ni interfacial reactions at various temperatures. Acta Mater. 50, 2461 2002Google Scholar
26Chen, C-M., Chen, S-W.: Electromigration effect upon the low-temperature Sn/Ni interfacial reactions. J. Mater. Res. 18, 1293 2003CrossRefGoogle Scholar
27Chen, S-W., Wu, S-H., Lee, S-W.: Interfacial reactions in the Sn–(Cu)/Ni, Sn–(Ni)/Cu, and Sn/(Cu, Ni) systems. J. Electron. Mater. 32, 1188 2003Google Scholar
28Gosele, U., Tu, K.N.: “Critical thickness” of amorphous phase formation in binary diffusion couples. J. Appl. Phys. 66, 2619 1989CrossRefGoogle Scholar
29Lur, W., Chen, L.J.: Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin-film and single-crystal silicon. Appl. Phys. Lett. 54, 1217 1989Google Scholar
30Cheng, J.Y., Chen, L.J.: Formation of amorphous interlayers by a solid-state diffusion in Zr and Hf thin films on silicon. Appl. Phys. Lett. 56, 457 1990Google Scholar
31Schwarz, R.B., Johnson, W.L.: Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys. Rev. Lett. 51, 415 1983Google Scholar
32Guilmin, P., Guyot, P., Marchal, G.: Amorphization of crystalline Co and Sn multilayers by solid state reaction. Phys. Lett. A 109, 174 1985CrossRefGoogle Scholar
33Shiau, F.Y., Chang, Y.A.: Amorphous phase formation by solid-state reaction between polycrystalline Co thin film and single-crystal GsAs. Appl. Phys. Lett. 55, 1510 1989Google Scholar
34Schwarz, R.B., Wong, K.L., Johnson, W.L., Clemens, B.M.: A study of amorphous alloys of Au with group IIIA elements (Y and La) formed by a solid-state diffusion reaction. J. Non-Cryst. Solids 61–62, 129 1984Google Scholar
35Clemens, B.M., Johnson, W.L., Schwarz, R.B.: Amorphous zirconium-nickel films formed by solid state reactions. J. Non-Cryst. Solids 61–62, 817 1984Google Scholar
36Newcomb, S.B., Tu, K.N.: Transmission electron microscopic observations of amorphous NiZr alloy formation by solid-state reaction. Appl. Phys. Lett. 48, 1436 1986Google Scholar
37Barbour, J.C., Saris, F.W., Wastasi, M., Mayer, J.W.: Amorphous Ni–Zr alloys as barriers for self-diffusion. Phys. Rev. B 32(2), 1363 1985Google Scholar
38Schroder, H., Samwer, K., Koster, U.: Micromechanism for metallic-glass formation by solid-state reactions. Phys. Rev. Lett. 54, 197 1985Google Scholar
39Van Rossum, M., Nicolet, M.A., Johnson, W.L.: Amorphization of Hf-Ni films by solid-state reaction. Phys. Rev. B 29, 5498 1984Google Scholar
40Herd, S.R., Tu, K.N., Ahn, K.Y.: Formation of an amorphous Rh–Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films. Appl. Phys. Lett. 42, 597 1983Google Scholar
41Natan, M.: Anomalous first-phase formation in rapidly thermal annealed, thin layered Si/Ni/Si films. Appl. Phys. Lett. 49, 257 1986Google Scholar
42Holloway, K., Sinclair, R.: Amorphous Ti–Si alloy formed by interdiffusion of amorphous Si and crystalline Ti multilayers. J. Appl. Phys. 61, 1359 1987Google Scholar
43Sands, T., Chang, C.C., Kaplan, A.S., Keramidas, V.G., Kirshnan, K.M., Washburn, J.: Ni–InP reaction: Formation of amorphous and crystalline ternary phases. Appl. Phys. Lett. 50, 1346 1987Google Scholar
44Caron-Popowich, R., Washburn, J., Sands, T., Kaplan, A.S.: Phase formation in the Pd–InP system. J. Appl. Phys. 64, 4909 1988Google Scholar
45Ouyang, C-P., Chang, J-J., Wen, J-F., Tien, L-C., Hwang, J., Pi, T-W.: Solid state amorphization at the room temperature deposited Ir/Si interface. J. Appl. Phys. 91(3), 1204 2002Google Scholar
46Chu, J.P., Liu, C.T., Mahalingam, T., Wang, S.F., O’Keefe, M.J., Johnson, B., Kuo, C.H.: Annealing-induced full amorphization in a multicomponent metallic film. Phys. Rev. B 69, 113410 2004Google Scholar
47Chiang, C.L., Chu, J.P., Liu, F.X., Liaw, P.K., Buchanan, R.A.: A 200 nm thick glass-forming metallic film for fatigue-property enhancements. Appl. Phys. Lett. 88, 131902 2006CrossRefGoogle Scholar
48Jang, J.S.C., Koch, C.C.: Amorphization and disordering of the Ni3Al ordered intermetallic by mechanical milling. J. Mater. Res. 5, 498 1990Google Scholar
49JCPDS No. 87-0712 International Center for Diffraction Data Newton Square, PA 2000Google Scholar
50JCPDS No. 04-0845 International Center for Diffraction Data Newton Square, PA 2000Google Scholar
51JCPDS No. 04-0846 International Center for Diffraction Data Newton Square, PA 2000Google Scholar
52JCPDS No. 04-0851 International Center for Diffraction Data Newton Square, PA 2000Google Scholar
53Oikawa, H., Hosoi, A.: Interdiffusion in Cu–Sn solid solutions: Confirmation of anomalously large Kirkendall effect. Scr. Metall. 9, 823 1975Google Scholar
54Christiansen, S., Albrecht, M., Strunk, H.P., Veprek, S.: Microstructure of novel superhard nanocrystalline-amorphous composites as analyzed by high resolution transmission electron microscopy. J. Vac. Sci. Technol. B 16, 19 1998Google Scholar
55Kim, S.H., Kim, J.K., Kim, K.H.: Influence of deposition conditions on the microstructure and mechanical properties of Ti–Si–N films by DC reactive magnetron sputtering. Thin Solid Films 420–421, 360 2002Google Scholar
56Lee, E-A., Kim, K.H.: Deposition and mechanical properties of Ti–Si–N coated layer on WC-Co by RF inductively coupled plasma-enhanced chemical vapor deposition. Thin Solid Films 420–421, 371 2002CrossRefGoogle Scholar
57ASM Handbook Committee Metals Handbook 10th ed.American Society for Metals Materials Park, OH 1990 2, 1166–1167Google Scholar
58Brandes, E.A.: Smithells Metals Reference Book, 6th ed.Butterworth & Co Ltd. London, UK 1983 13-1–13-14Google Scholar
59Bever, M.B.: Encyclopedia of Materials Science and Engineering MIT Press Oxford and Cambridge, UK 1986 Vol. 2, 1175–1186Google Scholar
60Tu, K.N., Mayer, J.W., Feldman, L.C.: Electronic Thin Film Science: For Electrical Engineers and Materials Scientists Macmillan Publishing Company New York 1992 246–280Google Scholar
61van Loo, F.J.J.: Multiphase diffusion in binary and ternary solid-state systems. Prog. Solid State Chem. 20, 47 1990CrossRefGoogle Scholar
62Schulz, K.J., Chang, Y.A.: Interfacial reactions between rhodium and GaAs in bulk and thin film form. Mater. Sci. Eng., B Solid 12, 223 1992Google Scholar
63Ronka, K.J., van Loo, F.J.J., Kivilahti, J.K.: The local nominal composition-useful concept for microjoining and interconnection application. Scr. Metall. 37, 1575 1997CrossRefGoogle Scholar