Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T06:47:35.278Z Has data issue: false hasContentIssue false

Characterization of SiC fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites

Published online by Cambridge University Press:  31 January 2011

M. Singh
Affiliation:
NYMA, Inc., Lewis Research Center Group, Cleveland, Ohio 44135–3191
R. M. Dickerson
Affiliation:
NYMA, Inc., Lewis Research Center Group, Cleveland, Ohio 44135–3191
Get access

Abstract

Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at. % niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of ∼67 MPa and a frictional stress of ∼60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fitzer, E. and Gadow, R., Am. Ceram. Soc. Bull. 65 (2), 325335 (1986).Google Scholar
2.Larsen, D. C., Adams, J., Johnson, L., Teotia, A., and Hill, L., Ceramic Materials for Heat Engines (Noyes Publications, NJ, 1985).Google Scholar
3.Kodama, H., Sakamoto, H., and Miyoshi, T., J. Am. Ceram. Soc. 72 (4), 551558 (1989).CrossRefGoogle Scholar
4.Miyoshi, T., Kodama, H., Sakamoto, H., Gotoh, A., and Iijima, S., Metall. Trans. 20A (11), 24192423 (1989).CrossRefGoogle Scholar
5.Hurwitz, F. I., NASA-TM 105754 (1992).Google Scholar
6.Lamicq, P. J., Bernhart, G. A., Dauchier, M. M., and Mace, J. G., Am. Ceram. Soc. Bull. 65 (2), 336338 (1986).Google Scholar
7.Luthra, K., Singh, R. N., and Brun, M., in High Temperature Ceramic Matrix Composites, edited by Naslain, R., Lamon, J., and Doumeingts, D. (Woodhead Publishing Ltd., 1993), pp. 429436.Google Scholar
8.Rice, R. W., AIChE J. 36 (4), 481510 (1990).CrossRefGoogle Scholar
9.Curtin, W., Eldridge, J., and Srinivasan, G., J. Am. Ceram. Soc. 76 (9), 23002304 (1993).CrossRefGoogle Scholar
10.Singh, M. and Levine, S. R., NASA TM-107001 (1995).Google Scholar
11.Singh, M., Dickerson, R. M., Olmstead, F. A., and Eldridge, J. I., in 97th Annual Meeting of the American Ceramic Society, Cincinnati, OH, May 1–3, 1995.Google Scholar
12.Singh, M., unpublished work.Google Scholar
13.Eldridge, J. I., NASA-TM-105341 (1991).Google Scholar
14.Handbook of Binary Alloy Phase Diagrams (American Society of Metals, Metals Park, OH, 1990).Google Scholar