Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T07:26:45.443Z Has data issue: false hasContentIssue false

Characterization of optomechanical modes in multilayer stack of graphene sheets

Published online by Cambridge University Press:  26 October 2017

Mohammad Mahdi Salary
Affiliation:
Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA
Sandeep Inampudi
Affiliation:
Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA
Hossein Mosallaei*
Affiliation:
Electrical and Computer Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Graphene, a two-dimensional (2D) crystalline material exhibits unique electronic, optical, and mechanical properties which makes it a promising candidate for optomechanical and optoelectronic devices. The giant plasmonic activity of graphene sheets enables low-dimensional confinement of light and enhanced light–matter interaction leading to significant enhancement of optical forces which may give rise to large mechanical deformations on account of ultralow mass density and flexibility of graphene. The multilayer stack and heterostructures of 2D materials provide access to a spectrum of guided modes which can be used to tailor the optical forces and mechanical states of graphene sheets. Here, we study the optical forces arising from the coupling of guided modes in layered structures of graphene sheets. We obtain the mechanical deformation states corresponding to each guided mode and demonstrate that the optical forces can be adjusted by changing the interlayer spacing as well as the chemical potential of graphene layers. Our results can be used for various designs of graphene-based optomechanical devices.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary L. Messing

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Grigorenko, A., Polini, M., and Novoselov, K.: Graphene plasmonics. Nat. Photonics 6, 749 (2012).Google Scholar
Jablan, M., Buljan, H., and Soljačić, M.: Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).Google Scholar
Woessner, A., Lundeberg, M., Gao, Y., Principi, A., Alonso-González, P., Carrega, M., Watanabe, K., Taniguchi, T., Vignale, G., Polini, M., Hone, J., Hillenbrand, R., and Koppens, F.: Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421 (2014).Google Scholar
Inampudi, S. and Mosallaei, H.: Fresnel refraction and diffraction of surface plasmon polaritons in two-dimensional conducting sheets. ACS Omega 1, 843 (2016).Google Scholar
Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., and Shen, Y.: Gate-variable optical transitions in graphene. Science 320, 206 (2008).Google Scholar
Zhang, Y., Jiang, Z., Small, J., Purewal, M., Tan, Y., Fazlollahi, M., Chudow, J., Jaszczak, J., Stormer, H., and Kim, P.: Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).Google Scholar
Chen, P. and Alù, A.: Atomically thin surface cloak using graphene monolayers. ACS Nano 5, 5855 (2011).Google Scholar
Miao, X., Tongay, S., Petterson, M., Berke, K., Rinzler, A., Appleton, B., and Hebard, A.: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745 (2012).Google Scholar
Inampudi, S., Cheng, J., and Mosallaei, H.: Graphene-based near-field optical microscopy: High-resolution imaging using reconfigurable gratings. Appl. Opt. 56, 3132 (2017).Google Scholar
Forouzmand, A. and Yakovlev, A.: Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces. AIP Adv. 5, 077108 (2015).Google Scholar
Forouzmand, A., Bernety, H., and Yakovlev, A.: Graphene-loaded wire medium for tunable broadband subwavelength imaging. Phys. Rev. B 92, 085402 (2015).Google Scholar
Cheng, J., Jafar-Zanjani, S., and Mosallaei, H.: Real-time two-dimensional beam steering with gate-tunable materials: A theoretical investigation. Appl. Opt. 55, 6137 (2016).Google Scholar
Jafar-Zanjani, S., Cheng, J., and Mosallaei, H.: Light manipulation with flat and conformal inhomogeneous dispersive impedance sheets: An efficient FDTD modeling. Appl. Opt. 55, 2967 (2016).CrossRefGoogle ScholarPubMed
Cheng, J., Wang, W., Mosallaei, H., and Kaxiras, E.: Surface plasmon engineering in graphene functionalized with organic molecules: A multiscale theoretical investigation. Nano Lett. 14, 50 (2014).Google Scholar
Li, Z., Yao, K., Xia, F., Shen, S., Tian, J., and Liu, Y.: Graphene plasmonic metasurfaces to steer infrared light. Sci. Rep. 5, 12423 (2015).Google Scholar
Lee, C., Wei, X., Kysar, J., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).Google Scholar
Tsoukleri, G., Parthenios, J., Papagelis, K., Jalil, R., Ferrari, A., Geim, A., Novoselov, K., and Galiotis, C.: Subjecting a graphene monolayer to tension and compression. Small 5, 2397 (2009).Google Scholar
Jiang, J., Wang, J., and Li, B.: Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B 80, 113405 (2009).CrossRefGoogle Scholar
Koenig, S., Boddeti, N., Dunn, M., and Bunch, J.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543 (2011).Google Scholar
Bunch, J. and Dunn, M.: Adhesion mechanics of graphene membranes. Solid State Commun. 152, 1359 (2012).Google Scholar
Chen, C., Rosenblatt, S., Bolotin, K., Kalb, W., Kim, P., Kymissis, I., Stormer, H., Heinz, T., and Hone, J.: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861 (2009).Google Scholar
Chen, C., Lee, S., Deshpande, V., Lee, G., Lekas, M., Shepard, K., and Hone, J.: Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923 (2013).Google Scholar
Barton, R., Storch, I., Adiga, V., Sakakibara, R., Cipriany, B., Ilic, B., Wang, S., Ong, P., McEuen, P., Parpia, J., and Craighead, H.: Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Lett. 12, 4681 (2012).Google Scholar
Mousavi, S., Rakich, P., and Wang, Z.: Strong THz and infrared optical forces on a suspended single-layer graphene sheet. ACS Photonics 1, 1107 (2014).Google Scholar
Salary, M., Inampudi, S., Zhang, K., Tadmor, E., and Mosallaei, H.: Mechanical actuation of graphene sheets via optically induced forces. Phys. Rev. B 94, 235403 (2016).Google Scholar
Xu, X., Shi, L., Liu, Y., Wang, Z., and Zhang, X.: Enhanced optical gradient forces between coupled graphene sheets. Sci. Rep. 6, 28568 (2016).Google Scholar
Sun, L., Lai, S., and Jiang, C.: Enhanced transverse optical force between paired graphene nanoribbons. IEEE J. Sel. Top. Quantum Electron. 23, 117 (2017).Google Scholar
Zhang, P., Shen, N., Koschny, T., and Soukoulis, C.: Surface-plasmon-mediated gradient force enhancement and mechanical state transitions of graphene sheets. ACS Photonics 4, 181 (2017).Google Scholar
Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970).Google Scholar
Shvedov, V., Rode, A., Izdebskaya, Y., Desyatnikov, A., Krolikowski, W., and Kivshar, Y.: Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).Google Scholar
Soo, C., Ji, T., Jae, H., and Sang, S.: Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam. Opt. Commun. 129, 394 (1996).Google Scholar
Woolf, D., Loncar, M., and Capasso, F.: The forces from coupled surface plasmon polaritons in planar waveguides. Opt. Express 17, 19996 (2009).Google Scholar
Li, D., Lawandy, N., and Zia, R.: Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures. Opt. Express 21, 20900 (2013).Google Scholar
Povinelli, M., Ibanescu, M., Johnson, S., and Joannopoulos, J.: Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide. Appl. Phys. Lett. 85, 1466 (2004).Google Scholar
Rodriguez, A., McCauley, A., Hui, P., Woolf, D., Iwase, E., Capasso, F., Loncar, M., and Johnson, S.: Bonding, antibonding and tunable optical forces in asymmetric membranes. Opt. Express 19, 2225 (2011).Google Scholar
Povinelli, M., Johnson, S., Loncar, M., Ibanescu, M., Smythe, E., Capasso, F., and Joannopoulos, J.: High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators. Opt. Express 13, 8286 (2005).Google Scholar
Jannasch, A., Demirörs, A., van Oostrum, P., van Blaaderen, A., and Schäffer, E.: Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat. Photonics 6, 469 (2012).Google Scholar
Garcés-Chávez, V., Quidant, R., Reece, P., Badenes, G., Torner, L., and Dholakia, K.: Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 73, 085417 (2006).Google Scholar
Grigorenko, A., Roberts, N., Dickinson, M., and Zhang, Y.: Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2, 365 (2008).Google Scholar
Salary, M. and Mosallaei, H.: Tailoring optical forces for nanoparticle manipulation on layered substrates. Phys. Rev. B 94, 035410 (2016).Google Scholar
Yu, W., Li, Z., Zhou, H., Chen, Y., Wang, Y., Huang, Y., and Duan, X.: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246 (2012).Google Scholar
Batrakov, K., Kuzhir, P., Maksimenko, S., Paddubskaya, A., Voronovich, S., Lambin, P., Kaplas, T., and Svirko, Y.: Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 4, 7191 (2014).Google Scholar
Inampudi, S., Nazari, M., Forouzmand, A., and Mosallaei, H.: Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures. J. Appl. Phys. 119, 025301 (2016).Google Scholar
Kemp, B., Grzegorczyk, T., and Kong, J.: Ab initio study of the radiation pressure on dielectric and magnetic media. Opt. Express 13, 9280 (2005).Google Scholar
Efetov, D. and Kim, P.: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).Google Scholar