Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-06T05:41:27.830Z Has data issue: true hasContentIssue false

Characterization of NixCo1−xO/ZrO2(CaO) directionally solidified eutectic (DSE) ceramic composites with a ductile interphase

Published online by Cambridge University Press:  31 January 2011

Nasim Alem
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Vinayak P. Dravid*
Affiliation:
Electron Probe Instrumentation Center (EPIC), Northwestern University Atomic; and Nanoscale Characterization Experimental Center (NUANCE), Northwestern University, Evanston, Illinois 60208
Shuyou Li
Affiliation:
Electron Probe Instrumentation Center (EPIC), Northwestern University Atomic; and Nanoscale Characterization Experimental Center (NUANCE), Northwestern University, Evanston, Illinois 60208
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

NixCo1−xO/ZrO2(CaO) directionally solidified eutectics (DSEs) form a ductile metallic interphase after they are chemically reduced at high temperatures. Vickers indentation tests have previously shown a significant change in the crack propagation behavior of the reduced composites due to plastic deformation and strain energy absorption mechanisms operating in the system after reduction. This paper focuses on structural and chemical characterization of NixCo1−xO/ZrO2(CaO) DSEs after reduction. Analytical transmission electron microscopy techniques such as energy dispersive x-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS) show elimination of oxygen and formation of nanoscale Ni(Co) solid.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Park, D.Y. Yang, J.M.: Fracture behavior of directionally solidified CeO2- and Pr2O3-doped Y3Al5O12/Al2O3 eutectic composites. Mater Sci. Eng. A—Struct. 332, 276 2002CrossRefGoogle Scholar
2Yang, J.M., Jeng, S.M. Chang, S.Y.: Fracture behavior of directionally solidified Y3Al5O12/Al2O3 eutectic fiber. J. Am. Ceram. Soc. 79, 1218 1996CrossRefGoogle Scholar
3Brewer, L.N., Guruz, M.U. Dravid, V.P.: Interfacial fracture mechanisms in solid solution directionally solidified eutectic oxide composites. Acta Mater. 52, 3781 2004CrossRefGoogle Scholar
4Brumels, M.D. Pletka, B.J.: Fracture initiation in the directionally solidified NiO–CaO eutectic. J. Am. Ceram. Soc. 70, 305 1987CrossRefGoogle Scholar
5Brewer, L.N., Endler, D.P., Austin, S., Dravid, V.P. Collins, J.M.: Interface modification for increased fracture toughness in reaction-formed yttrium aluminum garnet/alumina eutectic composites. J. Mater. Res. 14, 3907 1999CrossRefGoogle Scholar
6Llorca, J. Orera, V.M.: Directionally solidified eutectic ceramic oxides. Prog. Mater. Sci. 51, 711 2006CrossRefGoogle Scholar
7Ustundag, E., Subramanian, R., Vaia, R., Dieckmann, R. Sass, S.L.: In situ formation of metal-ceramic microstructures, including metal-ceramic composites, using reduction reactions. Acta Metall. Mater. 41, 2153 1993CrossRefGoogle Scholar
8Alem, N. Dravid, V.P.: Interfacial fracture phenomena in ceramic composite directionally solidified eutectics with a ductile interphase. J. Am. Ceram. Soc. 89, 767 2006CrossRefGoogle Scholar
9Bonvalotdubois, B., Dhalenne, G., Berthon, J., Revcolevschi, A. Rapp, R.A.: Reduction of NiO platelets in a NiO/ZrO2(CaO) directional composite. J. Am. Ceram. Soc. 71, 296 1988CrossRefGoogle Scholar
10Revcolevschi, A. Dhalenne, G.: Engineering oxide-oxide and metal-oxide microstructures in directionally solidified eutectics. Adv. Mater. 5, 657 1993CrossRefGoogle Scholar
11Laguna-Bercero, M.A., Larrea, A., Pena, J.I., Merino, R.I. Orera, V.M.: Structured porous Ni- and Co-YSZ cermets fabricated from directionally solidified eutectic composites. J. Eur. Ceram. Soc. 25, 1455 2005CrossRefGoogle Scholar
12Brewer, L.N., Dravid, V.P., Dhalenne, G. Velazquez, M.: Solid-solution directionally solidified eutectic oxide composites: Part I. Eutectic growth and characterization. J. Mater. Res. 17, 760 2002CrossRefGoogle Scholar
13Williams, D.B. Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science, 1st ed. Plenum Press, New York 1996 599615CrossRefGoogle Scholar
14Smith, K.E., Kershaw, R., Dwight, K. Wold, A.: Preparation and properties of cubic ZrO2 stabilized with Ni(II). Mater. Res. Bull. 22, 1125 1987CrossRefGoogle Scholar
15Dhalenne, G. Revcolevschi, A.: Directional solidification in the NiO–ZrO2 system. J. Cryst. Growth 69, 616 1984CrossRefGoogle Scholar
16Dravid, V.P., Lyman, C.E., Notis, M.R. Revcolevschi, A.: Low-energy interfaces in NiO–ZrO2(CaO) eutectic. Metall. Trans. A 21, 2309 1990CrossRefGoogle Scholar
17Dickey, E.C., Dravid, V.P., Nellist, P.D., Wallis, D.J. Pennycook, S.J.: Three-dimensional atomic structure of NiO-ZrO2(cubic) interfaces. Acta Mater. 46, 1801 1998CrossRefGoogle Scholar
18Dickey, E.C., Dravid, V.P., Nellist, P.D., Wallis, D.J., Pennycook, S.J. Revcolevschi, A.: Structure and bonding at Ni-ZrO2 (cubic) interfaces formed by the reduction of a NiO-ZrO2 (cubic) composite. Microsc. Microanal. 3, 443 1997CrossRefGoogle Scholar
19Laguna-Bercero, M.A., Larrea, A., Merino, R.I., Pena, J.I. Orera, V.M.: Stability of channeled Ni-YSZ cermets produced from self-assembled NiO-YSZ directionally solidified eutectics. J. Am. Ceram. Soc. 88, 3215 2005CrossRefGoogle Scholar
20Dravid, V.P., Lyman, C.E., Notis, M.R. Revcolevschi, A.: High-resolution transmission electron-microscopy of interphase interfaces in NiO-ZrO2(CaO). Ultramicroscopy 29, 60 1989CrossRefGoogle Scholar
21Betteridge, W.: Properties of metallic cobalt. Prog. Mater. Sci. 24, 51 1979CrossRefGoogle Scholar
22Tai, W.P. Watanabe, T.: Preparation and mechanical properties of Al2O3 reinforced by submicrometer Co particles. J. Mater. Sci. 33, 5795 1998CrossRefGoogle Scholar
23Liu, S.R. Liu, Y.: Beta → alpha transformation of gamma-phase in sintered WC-Co cemented carbides. J. Mater. Sci. Technol. 12, 398 1996Google Scholar
24Gallagher, P.C.J.: Influence of alloying, temperature, and related effects on stacking fault energy. Metall. Trans. 1, 2429 1970CrossRefGoogle Scholar
25Gao, J.P., Song, X.Y., Zhang, J.X., Yang, K.Y. Liu, X.M.: Thermodynamic functions and phase transformation of metal nanocrystals. J. Mater. Sci. Technol. 21, 705 2005Google Scholar
26Cabral, C., Barmak, K., Gupta, J., Clevenger, L.A., Arcot, B., Smith, D.A. Harper, J.M.E.: Role of stress relief in the hexagonal-close-packed to face-centered-cubic phase-transformation in cobalt thin-films. J. Vac. Sci. Technol. A 11, 1435 1993CrossRefGoogle Scholar
27Delamott, E. Altstett, C.: Transformation strain in stressed cobalt-nickel single crystals. T. Metall. Soc. AIME 245, 651 1969Google Scholar
28Votava, E.: The phase transformation in thin cobalt films. J. Inst. Met. 90, 129 1961Google Scholar
29Wright, J.G.: FCC-HCP phase-transition in electrolytically deposited epitaxial cobalt films. Thin Solid Films 22, 197 1974CrossRefGoogle Scholar
30Ericsson, T.: Temperature and concentration dependence of stacking fault energy in Co-Ni system. Acta Metall. 14, 853 1966CrossRefGoogle Scholar
31Ray, R.K.: Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys. Acta Metall. Mater. 43, 3861 1995CrossRefGoogle Scholar
32Filatov, S.K. Frankkam, V.A.: Structural characteristics of cubic ZrO2 stabilized by calcium. Sov. Phys. Crystallogr. USSR 14, 414 1969Google Scholar
33Brewer, L.N., Dravid, V.P., Velazquez, M. Revcolevschi, A.: Solid solution directionally solidified eutectic oxide composites: Part II. Co1−xNixO single-crystal growth and characterization. J. Mater. Res. 17, 768 2002CrossRefGoogle Scholar
34Guiberteau, F., Clauss, C., Dominguez-Rodriguez, A. Castaing, J.: Plastic-deformation of CoO single-crystals by compression along (111). J. Mater. Sci. Lett. 8, 216 1989CrossRefGoogle Scholar
35Guiberteau, F., Donminguez-Rodriguez, A., Spendel, M. Castaing, J.: Plastic-deformation of bunsenite (NiO) at temperatures below 1050 °C. Rev. Phys. Appl. 21, 87 1986CrossRefGoogle Scholar
36Brewer, L.N., Peascoe, R.A., Hubbard, C.R. Dravid, V.P.: Residual stress distributions in the solid solution eutectic, Co1−xNixO/ZrO2(CaO). J. Am. Ceram. Soc. 86, 2188 2003CrossRefGoogle Scholar