Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:24:16.595Z Has data issue: false hasContentIssue false

Characterization of ion-beam mixed multilayers via grazing x-ray reflectometry

Published online by Cambridge University Press:  31 January 2011

M. G. Le Boité
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, Batiment 108, BP1, 91406 Orsay, France
A. Traverse
Affiliation:
Centre de Spectrométrie Nucléaire et Spectrométrie de Masse, Batiment 108, BP1, 91406 Orsay, France
L. Névot
Affiliation:
Institut d'Optique, Batiment 503, BP43, 91406 Orsay, France
B. Pardo
Affiliation:
Institut d'Optique, Batiment 503, BP43, 91406 Orsay, France
J. Corno
Affiliation:
Institut d'Optique, Batiment 503, BP43, 91406 Orsay, France
Get access

Abstract

The grazing x-ray reflectrometry technique was used as a way to study modifications in metallic multilayers induced by ion-beam irradiation. Due to the high sensitivity of the technique, short-range atomic displacements of an atom A in a layer B can be detected so that the first stages of ion-beam mixing can be investigated. The rate of mixing is measured and the compound A1−xBx formed at the layers' interfaces is characterized.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chang, L. L., Segmüller, A., and Esaki, L., Appl. Phys. Lett. 28, 39 (1976).CrossRefGoogle Scholar
2Pomerantz, M. and Segmuller, A., Thin Solid Films 68, 33 (1980).Google Scholar
3Névot, L., Pardo, B., and Corno, J., Rev. Phys. Appl. 23(10) (in press).Google Scholar
4Wagendristel, A., Z. Naturforsch. 30a, 1648 (1975).Google Scholar
5Park, B., Spaepen, F., Poate, J. M., and Jacobson, D. C., Mater. Res. Soc. Symp. Proc. 74, 493 (1987).Google Scholar
6Traverse, A., Boité, M. G. Le, Névot, L., Pardo, B., and Corno, J., Appl. Phys. Lett. 51, 1907 (1987).Google Scholar
7Averback, R. S., Thompson, J. L., and Rehn, L. E., Mater. Res. Soc. Symp. Proc. 27, 25 (1984).Google Scholar
8Chaumont, J., Lalu, F., Salome, M., Lamoise, A. M., and Bernas, H., Nucl. Instrum. Methods 189, 193 (1980).CrossRefGoogle Scholar
9Born, M. and Wolf, E., Principle of Optics (Pergamon, New York, 1965), 3rd revised ed., p. 51.Google Scholar
10Nevot, L. and Croce, P., Rev. Phys. Appl. 15, 761 (1980).CrossRefGoogle Scholar
11Pardo, B. and André, J. M., Rev. Phys. Appl. 23(10) (in press).Google Scholar
12Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic, New York, 1985); Metallic Superlattices. Artificially Structured Materials, edited by T. Shinjo and T. Takada (Elsevier, New York, 1987).Google Scholar
13Bruijn, M. P., Chakralorty, P., Hessen, H. van, Verhoeven, J., Wiel, M. J. van der, and Bartels, W. J., SPIE 563, 182 (1985).Google Scholar
14Andersen, H. H. and Bay, H. L., in Topics in Applied Physics (Springer, New York, 1981), p. 145.Google Scholar
15Boité, M. G. Le, Traverse, A., Bernas, H., Janot, C., and Chevrier, J., Mater. Lett. 6, 173 (1988).Google Scholar
16Traverse, A., Boité, M. G. Le, and Martin, G., Europhys. Lett. (submitted for publication).Google Scholar
17Boité, M. G. Le, Traverse, A., Névot, L., Pardo, B., and Corno, J., Nucl. Instrum. Methods B 29, 653 (1988).CrossRefGoogle Scholar
18Tsaur, B. Y., Lau, S. S., Hung, L. S., and Mayer, J. W., Nucl. Instrum. Methods 183/184, 67 (1981).Google Scholar
19Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958).Google Scholar