Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:53:16.770Z Has data issue: false hasContentIssue false

Characterization of europium implanted LiNbO3

Published online by Cambridge University Press:  03 March 2011

P. Moretti
Affiliation:
Département de Physique des Matériaux (URA CNRS 172), Université Claude Bernard Lyon I, 69622 Villeurbanne Cédex, France
B. Canut
Affiliation:
Département de Physique des Matériaux (URA CNRS 172), Université Claude Bernard Lyon I, 69622 Villeurbanne Cédex, France
S.M.M. Ramos
Affiliation:
Département de Physique des Matériaux (URA CNRS 172), Université Claude Bernard Lyon I, 69622 Villeurbanne Cédex, France
R. Brenier
Affiliation:
Département de Physique des Matériaux (URA CNRS 172), Université Claude Bernard Lyon I, 69622 Villeurbanne Cédex, France
P. Thévenard
Affiliation:
Département de Physique des Matériaux (URA CNRS 172), Université Claude Bernard Lyon I, 69622 Villeurbanne Cédex, France
D. Poker
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J.B.M. Da Cunha
Affiliation:
Instituto de Fisica, UFRGS, Caixa Postal 15051, Porto Alegre, RS, Brasil
L. Amaral
Affiliation:
Instituto de Fisica, UFRGS, Caixa Postal 15051, Porto Alegre, RS, Brasil
A. Vasquez
Affiliation:
Instituto de Fisica, UFRGS, Caixa Postal 15051, Porto Alegre, RS, Brasil
Get access

Abstract

LiNbO3 single crystals were implanted at room temperature with Eu+ ions at 70 keV with fluence ranging from 0.5 to 5 × 1016 ions · cm−2. The damage in the implanted layer has been investigated by Channeling Rutherford Backscattering (RBS-C), and the oxidation states of the cations have been determined by x-ray photoelectron spectroscopy (XPS). Following implantation, a fully amorphized layer of 60 nm is generated, even for the lowest fluence employed. Subsequent annealing in air, in the range 800–1250 K, was applied to restore tentatively the crystallinity and promote the substitutional incorporation of Eu in the crystal. Only a partial recrystallization of the damaged layer was observed. For as-implanted samples, XPS spectra clearly reveal europium in Eu2+ and Eu3+ states, and the Nb5+ ions are driven to lower charge states.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1De Micheli, M. P., in Optical Waveguide Materials, edited by Broer, M. M., Sigel, G. H. Jr., Kersten, R. Th., and Kawazoe, H. (Mater. Res. Soc. Symp. Proc. 244, Pittsburgh, PA, 1992), p. 295.Google Scholar
2Armenise, M. N., IEE Proc. 135, Pt. J., 2, 85 (1988).Google Scholar
3Buchal, Ch., Ashley, P. R., and Appleton, B. R., J. Mater. Res. 2, 222 (1987).Google Scholar
4Destefanis, G. L., Gailliard, J. P., Ligeon, E., Valette, S., Farmery, B. W., Townsend, P. D., and Perez, A., J. Appl. Phys. 50, 7898 (1979).Google Scholar
5Moretti, P., Thévenard, P., Wirl, K., Hertel, P., Hesse, H., Krätzig, E., and Godefroy, G., Seventh European Meeting of Ferroelectricity, July 8–10, 1991, Dijon, France, Ferroelectrics 128, 13 (1992).Google Scholar
6Lallier, E., Pocholle, J. P., Papuchon, M., Grezes-Besset, C., Pelletier, E., De Micheli, M., Li, M. J., He, Q., and Ostrowsky, D. B., Electron. Lett. 25, 1491 (1989).Google Scholar
7Field, S. J., Hanna, D. C., Large, A. C., Shepherd, D. P., Tropper, A. C., Chandler, P. J., Townsend, P. D., and Zhang, L., Opt. Lett. 17, 52 (1991).Google Scholar
8Brinckmann, R., Sohler, W., and Suche, H., Electron. Lett. 27, 415 (1991).Google Scholar
9Buchal, Ch. and Mohr, S., J. Mater. Res. 6, 134 (1991).CrossRefGoogle Scholar
10Bertoti, I., Kelly, R., Mohai, M., and Toth, A., Surf. Interface Analysis 19, 291 (1992).Google Scholar
11Wagner, C. D., Riggs, W. M., and Davis, L. F., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Pairie, MN, 1978).Google Scholar
12Courths, R., Hochst, H., Steiner, S., and Hüfner, S., Ferroelectrics 26, 745 (1980).CrossRefGoogle Scholar
13Thévenard, P., J. de Phys. Coll. C7, 37, 526 (1976).Google Scholar
14Rao, C. N. R. and Sarma, D. D., J. Solid State Chem. 45, 14 (1982).Google Scholar
15Nowick, I., Campana, M., and Wertheim, G. K., Phys. Rev. Lett. 38, 43 (1977).Google Scholar
16Nilsson, Ö., Norberg, C. H., Bergmark, J. E., Fahlman, A., Nordling, C, and Siegbahn, K., Helv. Phys. Acta 41, 1064 (1968).Google Scholar
17Canut, B., Romana, L., Thévenard, P., and Moncoffre, N., Nucl. Instrum. Methods B 46, 128 (1990).Google Scholar
18Götz, G., in Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier, Amsterdam, 1987), p. 412.Google Scholar
19Tianhao, S., Xinyuan, J., Wei, S., and Xiqi, F., Mater. Sci. Eng. B 10, 19 (1991).Google Scholar
20Appleton, B. R., Beardsley, G. M., Farlow, G. C., Christie, W. H., and Ashley, P. R., J. Mater. Res. 1, 104 (1986).Google Scholar
21Rebouta, L., da Silva, M. F., Soares, J. C., Sanz-Garcia, J. A., Dieguez, E., and Agulló-López, F., Nucl. Instrum. Methods B 65, 256 (1992).CrossRefGoogle Scholar
22Poker, D. B. and Thomas, D. K., J. Mater. Res. 4, 412 (1989).CrossRefGoogle Scholar
23Buchal, Ch., Ashley, P. R., and Appleton, B. R., J. Mater. Res. 2, 222 (1987).CrossRefGoogle Scholar
24White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C, Mater. Sci. Rep. 4, 43 (1989).Google Scholar
25Rankin, J., McCallum, J. C., and Boatner, L. A., J. Mater. Res. 7, 717 (1992).Google Scholar