Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:41:17.175Z Has data issue: false hasContentIssue false

Characterization of electrochemical photovoltaic cells using polycrystalline CdSe and CdTe electrodes grown by a liquid metal-vapor reaction

Published online by Cambridge University Press:  31 January 2011

Zhitsing Deng
Affiliation:
Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, 1455 De Maisonneuve Bld. West, Montréal, Québec, Canada H3G 1M8
Michelina Cinquino
Affiliation:
Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, 1455 De Maisonneuve Bld. West, Montréal, Québec, Canada H3G 1M8
Marcus F. Lawrence*
Affiliation:
Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, 1455 De Maisonneuve Bld. West, Montréal, Québec, Canada H3G 1M8
*
b)Address correspondence to this author.
Get access

Abstract

Polycrystalline CdSe and CdTe layers were fabricated by putting liquid Cd in contact with Se or Te vapors under constant Ar flow. The crystalline structure, surface properties, and semiconducting properties of these materials have been determined. Both materials were found to be n-type semiconductors. The results show that, under the proper experimental conditions, the liquid metal-vapor reaction enables the synthesis of polycrystalline CdSe photoelectrodes with a 6.9% energy conversion efficiency when used in an electrochemical photovoltaic cell under 80 mW/cm2 of white light illumination. This efficiency rates amongst the highest ones measured under similar conditions using polycrystalline CdSe. These CdSe layers have a majority charge carrier density of ND = 2.6 × 1017 cm−3 and possess a highly textured surface which is assumed to be mainly responsible for the high photovoltaic efficiency. The highly textured CdTe samples obtained by this process, however, show a photovoltaic conversion efficiency of only 0.2%, and this is seen to be mainly due to their high majority charge carrier density of ND = 7.8 × 1019 cm−3.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Russak, M. A., Reichman, J., Witzke, H., Deb, S. K., and Chen, S. N., J. Electrochem. Soc. 127, 725 (1980).CrossRefGoogle Scholar
2.Hodes, G., Nature 285, 29 (1980).CrossRefGoogle Scholar
3.Miller, D. J. and Haneman, D., Solar Energy Mater. 4, 223 (1981).CrossRefGoogle Scholar
4.Loutfy, R. O., Mclntyre, T. F., Murti, D. K., and Hsiao, C. K., Solar Energy Mater. 5, 221 (1981).CrossRefGoogle Scholar
5.Liu, C. J. and Wang, J. H., J. Electrochem. Soc. 129, 719 (1982).CrossRefGoogle Scholar
6.Tomkiewicz, M., Ling, I., and Parsons, W. S., J. Electrochem. Soc. 129, 2016 (1982).CrossRefGoogle Scholar
7.Boudreau, R. A. and Rauh, R. D., J. Electrochem. Soc. 130, 513 (1983).CrossRefGoogle Scholar
8.Haak, R., Tench, D., and Russak, M. A., J. Electrochem. Soc. 131, 2709 (1984).CrossRefGoogle Scholar
9.Loutfy, R. O. and Ng, D. S., Solar Energy Mater. 11, 319 (1984).CrossRefGoogle Scholar
10.Canevari, V., Romeo, N., Sberveglieri, G., Azzi, S., Tosi, A., Curti, M., and Zanotti, L., J. Vac. Sci. Technol. A2, 9 (1984).CrossRefGoogle Scholar
11.Cocivera, M., Darkowski, A., and Love, B., J. Electrochem. Soc. 131, 2514 (1984).CrossRefGoogle Scholar
12.Cocivera, M., J. Chem. Soc, Chem. Commun., 938 (1984).CrossRefGoogle Scholar
13.Szabo, J. P. and Cocivera, M., J. Electrochem. Soc. 133, 1247 (1986).CrossRefGoogle Scholar
14.Lee, J. S., Jun, Y. K., and Im, H. B., J. Electrochem. Soc. 134, 249 (1987).Google Scholar
15.Gutierrez, M. T. and Salvador, P., Solar Energy Mater. 15, 99 (1987).CrossRefGoogle Scholar
16.Iwanov, D. and Nanev, C., Acta Physica Academiae Scientiarum Hungaricae 47, 83 (1979).CrossRefGoogle Scholar
17.Curran, J. S., Philippe, R., Roubin, M., and Mosoni, L., Solar Energy Mater. 9, 329 (1983).CrossRefGoogle Scholar
18.Lawrence, M. F., Du, N., Philippe, R., and Dodelet, J. P., J. Cryst. Growth 84, 133 (1987).CrossRefGoogle Scholar
19.Curran, J. S., Philippe, R., and Stremsdoerfer, G., J. Electroanal. Chem. 187, 121 (1985).CrossRefGoogle Scholar
20.Lawrence, M. F., Du, N., Stremsdoerfer, G., Philippe, R., and odelet, J. P., The Electrochemical Society, Extended Abstracts 86–1, 467 (1986).Google Scholar
21.Parkinson, B., J. Chem. Education 60, 338 (1983).CrossRefGoogle Scholar
22.Boudreau, S. M., Rauh, R. D., and Boudreau, R. A., J. Chem. Education 60, 498 (1983).CrossRefGoogle Scholar
23.Handbook of Chemistry and Physics, edited by Weast, R. C., 53rd ed. (CRC Press, Cleveland, OH, 1972), pp. D175, D-176.Google Scholar
24.Thermophysical Properties of Matter: Thermal Expansion, Metallic Elements and Alloys, edited by Touloukian, Y. S. (IFI/Plenum, New York, 1975), The TPRC Data Series, Vol. 12, p. 40.Google Scholar
25.Thermophysical Properties of Matter: Thermal Expansion, Nonmetallic Solids, edited by Touloukian, Y. S. (IFI/Plenum, New York, 1977), The TPRC Data Series, Vol. 13, pp. 1185, 1186, and 1243.Google Scholar
26.Wolfe, C. M., Holonyak, N., Jr., and Stillman, G. E., Physical Properties of Semiconductors (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989), p. 341.Google Scholar
27.Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1969), pp. 371, 372.Google Scholar
28.Pankove, J. I., Optical Processes in Semiconductors, Solid State Physical Electronics Series, edited by Holonyak, N., Jr. (Prentice- Hall, Inc., Englewood Cliffs, NJ, 1971), pp. 3436.Google Scholar
29.Butler, M. A., J. Appl. Phys. 48, 1914 (1977).CrossRefGoogle Scholar
30.Colbow, K., Harrison, D. J., and Funt, B. L., J. Electrochem. Soc. 128, 547 (1981).CrossRefGoogle Scholar
31.Hodes, G., Manassen, J., and Cahen, D., Bull. Isr. Phys. Soc. 22, 100 (1976).Google Scholar
32.Cahen, D., Hodes, G., and Manassen, J., J. Electrochem. Soc. 125, 1623 (1978).CrossRefGoogle Scholar
33.Ellis, A. B., Kaiser, S. W., and Wrighton, M. S., J. Am. Chem. Soc. 98, 1635 (1976).CrossRefGoogle Scholar
34.Ellis, A. B., Kaiser, S. W., Bolts, J. M., and Wrighton, M. S., J. Am. Chem. Soc. 99, 2839 (1977).CrossRefGoogle Scholar