Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T13:43:58.418Z Has data issue: false hasContentIssue false

Characterization and control of microstructure in combinatorially prepared aluminum-silicon thin film nanocomposites

Published online by Cambridge University Press:  01 May 2006

C.H. Olk*
Affiliation:
Materials and Processes Laboratory, General Motors Research and Development Center, Warren, Michigan 48090
D.B. Haddad
Affiliation:
Materials and Processes Laboratory, General Motors Research and Development Center, Warren, Michigan 48090
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this paper, we describe the application of thin film combinatorial deposition methods to systematically control the microstructure of AlxSi(1−x) alloys through variations in composition and growth temperature. Discrete libraries of compositionally graded films have been sputter deposited onto silicon substrates to produce two structural phase regions: amorphous a-(Al–Si) and amorphous a-Si plus crystalline c-Al. The microstructure was investigated using x-ray diffraction while atomic force microscopy techniques were used to obtain surface morphology and phase distribution.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cibula, J.: The mechanism of grain refinement of sand castings in aluminum alloys. J. Inst. Met. 76, 321 19491950.Google Scholar
2.Rao, A.K. Prasada, Das, K., Murty, B.S., Chakraborty, M.: Effect of grain refinement on wear properties of Al and Al–7Si alloy. Wear 257, 148 (2004).Google Scholar
3.McCartney, D.G.: Grain refining of aluminum and its alloys using inoculants. Int. Mater. Rev. 34, 247 (1989).CrossRefGoogle Scholar
4.Subramanian, C.: Some considerations towards the design of a wear resistant aluminum alloy. Wear 155, 193 (1992).CrossRefGoogle Scholar
5.Casellas, D., Beltran, A., Prado, J.M., Larson, A., Romero, A.: Microstructural effects on the dry wear resistance of powder metallurgy Al–Si alloys. Wear 257, 730 (2004).CrossRefGoogle Scholar
6.Konno, T.J., Sinclair, R.: In situ HREM of crystallization reactions. Mater. Chem. Phys. 35, 99 (1993).CrossRefGoogle Scholar
7.Cremer, R., Richter, S.: Rapid chemical and structural characterization of metastable thin-film libraries by a combination of electron probe microanalysis and scanning x-ray diffract. Surf. Interface Anal. 34, 686 (2002).CrossRefGoogle Scholar
8.Bellamy, F.: High throughput synthesis (combinatorial chemistry) in the pharmaceutical industry. Actual Chimique 9, 4 (2000).Google Scholar
9.Xiang, X.D., Sun, X., Briceno, G., Lou, Y., Wang, K., Chang, H., Wallace-Freedman, W.G., Chen, S., Schultz, P.: A combinatorial approach to materials discovery. Science 268, 1738 (1995).CrossRefGoogle ScholarPubMed
10.Schlogl, R.: Combinatorial electrochemical synthesis and screening of Pt–WO3 catalysts for electro-oxidation of methanol. Angew. Chem. 37, 2333 (1998).Google Scholar
11.Wang, J., Yoo, Y., Gao, C., Takeuchi, I., Sun, X., Chang, H., Xiang, X.D., Schultz, P.: Identification of a blue photoluminescent composite material from a combinatorial library. Science 279, 1712 (1998).CrossRefGoogle ScholarPubMed
12.Chang, H., Gao, C., Takeuchi, I., Yoo, Y., Wang, J., Schultz, P., Xiang, X.D., Sharma, R.P., Downes, M., Venkatesan, T.: Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications. Appl. Phys. Lett. 72, 2185 (1998).CrossRefGoogle Scholar
13.Reichenbach, H.M., McGinn, P.J.: Combinatorial synthesis of oxide powders. J. Mater. Res. 16, 967 (2001).CrossRefGoogle Scholar
14.Olk, C.H., Tibbetts, G.G., Simon, D., Moleski, J.J.: Combinatorial preparation and infrared screening of hydrogen sorbing metal alloys. J. Appl. Phys. 94, 720 (2003).CrossRefGoogle Scholar
15.Hanak, J.: Multiple-sample concept in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964 (1970).CrossRefGoogle Scholar
16.Hanak, J.: A quantum leap in the development of new materials and devices. Appl. Surf. Sci. 223, 1 (2004).CrossRefGoogle Scholar
17.Briceño, G., Chang, H., Sun, X., Schultz, P.G., Xiang, X-D.: Class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270, 273 (1995).CrossRefGoogle Scholar
18.Xiang, X-D.: High throughput synthesis and screening for functional materials. Appl. Surf. Sci. 223, 54 (2004).CrossRefGoogle Scholar
19.Zhao, J-C.: A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16, 1565 (2001).CrossRefGoogle Scholar
20.Koinuma, H., Takeuchi, I.: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429 (2004).CrossRefGoogle ScholarPubMed
21.Combinatorial Materials Syntheses, edited by Takeuchi, I. and Xiang, X-D.Marcel Dekker New York(2003).Google Scholar
22.Koster, U., Weiss, P.: Crystallization and decomposition of amorphous silicon-aluminum films. J. Non-Cryst. Solids 17, 359 (1975).CrossRefGoogle Scholar
23.Dimova-Malinovska, D., Grigorov, V., Nikolaeva-Dimitrova, M., Angelov, O., Peev, N.: Investigation of structural properties of poly-Si thin films obtained by Al induced crystallization in different atmospheres. Thin Solid Films 501, 358 (2006).CrossRefGoogle Scholar
24.Klein, J., Schneider, J., Muske, M., Gail, S., Fuhs, W.: Aluminuminduced crystallization of amorphous silicon: Influence of the aluminum layer on the process. Thin Solid Films 451–452, 481 (2004).CrossRefGoogle Scholar
25.Naka, M., Shibayanagi, T., Maeda, M., Zhao, S., Mori, H.: Formation and physical properties of Al base alloys by sputtering. Vacuum 59, 252 (2000).CrossRefGoogle Scholar
26.Shao, Z., Mou, J., Czajkowsky, D., Yang, J., Yuan, J.: Biological atomic force microscopy: What is achieved and what is needed. Adv. Phys. 45, 1 (1996).CrossRefGoogle Scholar
27.Pang, G.K.H., Baba-Kishi, K.Z., Patel, A.: Topographic and phase-contrast imaging in atomic force microscopy. Ultramicroscopy 81, 35 (2000).CrossRefGoogle ScholarPubMed
28.Zhong, Q., Inniss, D., Elings, V.B.: Self-oscillating tapping mode atomic force microscopy. Surf. Sci. 290, L688 (1993).CrossRefGoogle Scholar
29.Kim, Y., Lieber, C.M.: Machining oxide thin films with an atomic force and object formation on the nanometer scale. Science 257, 375 (1992).CrossRefGoogle ScholarPubMed
30.Winkler, R.G., Spatz, J.P., Sheiko, S., Moller, M., Reineker, P.R., Marti, O.: Forces affecting the substrate in resonant tapping force microscopy. Phys. Rev. B 54, 8908 (1996).CrossRefGoogle Scholar
31.Watanabe, H., Sato, Y., Nie, C., Ando, A., Ohtani, S., Iwamoto, N.: The mechanical properties and microstructure of Ti–Si–N nanocomposite films by ion plating. Surf. Coat. Technol. 169–170, 452 (2003).CrossRefGoogle Scholar
32.Shen, Y.G., Liu, Z-J., Jiang, N., Zhang, H.S., Chan, K.H., Xu, Z.K.: Effect of silicon addition on surface morphology and structural properties of titanium nitride films grown by reactive unbalanced direct current-magnetron sputtering. J. Mater. Res. 19, 523 (2004).CrossRefGoogle Scholar
33.Cremer, R., Neuschutz, D.: Optimization of (Ti, Al)N hard coatings by a combinatorial approach. Inter. J. Inorg. Mater. 3, 1181 (2001).CrossRefGoogle Scholar
34.Han, S.M., Shah, R., Banerjee, R., Viswanathan, G.B., Clemens, B.M., Nix, W.D.: Combinatorial studies of mechanical properties of Ti–Al thin films using nanoindentation. Acta Mater. 53, 2059 (2005).CrossRefGoogle Scholar