Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T07:46:09.676Z Has data issue: false hasContentIssue false

Characteristics of conductive SrRuO3 thin films with different microstructures

Published online by Cambridge University Press:  31 January 2011

Q. X. Jia
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
F. Chu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
C. D. Adams
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
X. D. Wu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Hawley
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. H. Cho
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A. T. Findikoglu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
S. R. Foltyn
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. L. Smith
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. E. Mitchell
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Conductive SrRuO3 thin films were epitaxially grown on (100) LaAlO3 substrates by pulsed laser deposition over a temperature range from 650 °C to 825 °C. Well-textured films exhibiting a strong orientation relationship to the underlying substrate could be obtained at a deposition temperature as low as 450 °C. The degree of crystallinity of the films improved with increasing deposition temperature as confirmed by x-ray diffraction, transmission electron microscopy, and scanning tunneling microscopy. Scanning electron microscopy revealed no particulates on the film surface. The resistivity of the SrRuO3 thin films was found to be a strong function of the crystallinity of the film and hence the substrate temperature during film deposition. A residual resistivity ratio (RRR = ρ300 K/ρ4.2 K) of more than 8 was obtained for the SrRuO3 thin films deposited under optimized processing conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wu, X. D., Foltyn, S.R., Dye, R.C., Coulter, Y., and Muenchausen, R.E., Appl. Phys. Lett. 62, 2434 (1993).CrossRefGoogle Scholar
2.Tiwari, P., Wu, X. D., Foltyn, S. R., Le, M. Q., Campbell, I.H., Dye, R. C., and Muenchausen, R. E., Appl. Phys. Lett. 64, 634 (1994).CrossRefGoogle Scholar
3.Antognazza, L., Char, K., Geballe, T. H., King, L. L. H., and Sleight, A. W., Appl. Phys. Lett. 63, 1005 (1993).CrossRefGoogle Scholar
4.Domel, R., Jia, C. L., Competti, C., Ockenfuss, G., and Braginski, A. I., Supercond. Sci. Technol. 7, 277 (1994).CrossRefGoogle Scholar
5.Eom, C. B., van Dover, R. B., Phillips, J.M., Werder, D. J., Marshall, J.H., Chen, C. H., Cava, R. J., Fleming, R. M., and Fork, D. K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
6.Jia, Q. X., Wu, X. D., Foltyn, S. R., and Tiwari, P., Appl. Phys. Lett. 66, 2197 (1995).CrossRefGoogle Scholar
7.Wills, L. A. and Amano, J., in Ferroelectric Thin Films IV, edited by Desu, S. B., Tuttle, B. A., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 470.Google Scholar
8.Hou, S. Y., Kwo, J., Watts, R. K., Cheng, J.Y., and Fork, D. K., Appl. Phys. Lett. 67, 1387 (1995).CrossRefGoogle Scholar
9.Eom, C. B., Cava, R. J., Fleming, R. H., Phillips, J. M., van Dover, R. B., Marshall, J. H., Hsu, J.W. P., Krajewski, J. J., and Peck, W. F. Jr., Science 258, 1766 (1992).CrossRefGoogle Scholar
10.Nora, Y. and Miyahara, S., J. Phys. Soc. Jpn. 27, 518 (1969).CrossRefGoogle Scholar
11.Bouchard, R. J. and Gillson, J.L., Mater. Res. Bull. 7, 873 (1972).CrossRefGoogle Scholar
12.Koren, G., Gupta, A., Baseman, R. J., Lutwyche, M. I., and Laibowitz, R. B., Appl. Phys. Lett. 55, 2450 (1989).CrossRefGoogle Scholar
13.Callaghan, A., Moeller, C. W., and Ward, R., Inorg. Chem. 5, 1572 (1966).CrossRefGoogle Scholar