Published online by Cambridge University Press: 27 June 2017
Ce3+ ions in ceria nanoparticles (NPs) play a role as reactive sites in the adsorption of silicate anions. However, the limited concentration of Ce3+ ions in ceria NPs remains a major challenge in this regard. Herein, we report a simple strategy to synthesize Ce3+-enriched core–shell ceria NPs for enhanced adsorption of silicate anions. To increase the overall Ce3+ concentration, a shell layer is composed of Ce3+-rich ultrasmall ceria NPs approximately 5 nm in size. The Ce3+ concentration of such core–shell ceria NPs is increased by 12.7–17.1% relative to that of the pristine ceria NPs, resulting in increased adsorption of silicate anions. The Freundlich model fits the observed adsorption isotherm well and the constants of adsorption capacity (KF) and adsorption intensity (1/n) indicate higher adsorption affinity of the core–shell ceria NPs for silicate anions. We attribute these improvements to the increased Ce3+ concentration contributed by the ultrasmall ceria coating. This strategy can be used for enhancing the reactivity of ceria materials.
Contributing Editor: Edson Roberto Leite
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.