Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T07:37:21.781Z Has data issue: false hasContentIssue false

Cation sublattice stacking faults in Cu-rich chalcopyrite CuInSe2

Published online by Cambridge University Press:  31 January 2011

Olof Hellman
Affiliation:
Tanaka SolidJunction Project/ERATO, Research Development Corporation of Japan, 1–1–1 Fukuura, Kanazawa-ku, Yokohama 236, Japan
Shun-ichiro Tanaka
Affiliation:
Tanaka SolidJunction Project/ERATO, Research Development Corporation of Japan, 1–1–1 Fukuura, Kanazawa-ku, Yokohama 236, Japan
Shigeru Niki
Affiliation:
Optoelectronics Division, ElecTroTechnical Laboratory, 1–1–4 Umezono Tsukuba, Ibaraki 305, Japan
Paul Fons
Affiliation:
Optoelectronics Division, ElecTroTechnical Laboratory, 1–1–4 Umezono Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Using transmission electron microscopy, we have found stacking faults on the cation sublattice in the chalcopyrite structure of CuInSe2. These films are grown by molecular beam epitaxy under Cu-rich conditions. These stacking faults are found to extend large distances in the plane of the film, and are not found to be present in samples not grown in Cu-rich conditions. We suggest that this defect is triggered by a Cu-induced transformation of the surface structure of the growing film.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Stolt, L., Hedström, J., Kessler, J., Ruckh, M., Velthaus, K. O., and Schock, H. W., Appl. Phys. Lett. 62, 597 (1993).Google Scholar
2.Niki, S., Makita, Y., Yamada, A., Hellman, O., Fons, P. J., Obara, A., Okada, Y., Shioda, R., Oyanagi, H., Kurafuji, T., Chichibu, S., and Nakanishi, H., J. Cryst. Growth (1995, in press).Google Scholar
3.Tseng, B. H. and Lin, S. B., in Mechanisms of Thin Film Evolution, edited by Yalisove, S. M., Thompson, C. V., and Eaglesham, D. J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994).Google Scholar
4.Bode, M. H., J. Appl. Phys. 76 (1), 159 (1994).CrossRefGoogle Scholar
5.Palatnik, L. S. and Rogacheva, E.I., Neorgan. Mat. 2, 478 (1966).Google Scholar
6.Tiwari, A. N., Blunier, S., Fitzmoser, M., Zogg, H., Schmidt, D., and Schock, H.W., Appl. Phys. Lett. 65, 3347 (1994).CrossRefGoogle Scholar
7.Nelson, A. J., Horner, G. S., Sinha, K., and Bode, M. H., Appl. Phys. Lett. 64 (26), 3600 (1994).Google Scholar
8.Negami, T., Kohara, N., Nishitani, M., and Wada, T., Jpn. J. Appl. Phys. 33, L1251 (1994).CrossRefGoogle Scholar
9.Xiao, H.Z., Yang, L.C., and Rockett, A., J. Appl. Phys. 76 (3), 1503 (1994).CrossRefGoogle Scholar
10.Djega-Maridassou, C., Rimsky, A., Lesueur, R., and Albany, J. H., Jpn. J. Appl. Phys. 19, 89 (1980).CrossRefGoogle Scholar
11.Kiely, C. J., Pond, R. C., Kenshole, G., and Rockett, A., Philos. Mag. A63 (6), 1249.Google Scholar
12.Niki, S., Makita, Y., Yamada, A., Obara, A., Misawa, S., Igarashi, O., Aoki, K., and Kutsuwada, N., Jpn. J. Appl. Phys. 33, L500 (1994).CrossRefGoogle Scholar
13. We index throughout the paper with respect to the CuInSe2 chalcopyrite structure, assuming c-axis is perpendicular to the film, and the symmetric a and b axes in the plane of the film, unless stated otherwise. Thus, the close-packed {112} planes correspond to the {111} planes of GaAs.Google Scholar
14.Fons, P., Niki, S., Yamada, A., Okada, A., and Tweet, D. J., Proceedings of the 10th International Conference on Ternary and Multinary Compound Semiconductors, Stuttgart Germany, September 1995.Google Scholar
15. The [120] and [210] axes are interchangable but not equivalent. They differ only by a [0,1/2,1/4] translation vector; you can thus observe that one is different from the other, but it is arbitrary which one is [120] and which is [210].Google Scholar