Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T00:35:49.708Z Has data issue: false hasContentIssue false

Cathodoluminescence characterization of ZnO nanorods synthesized by chemical solution and of its conversion to ellipsoidal morphology

Published online by Cambridge University Press:  16 September 2014

Muhammad Israr-Qadir*
Affiliation:
Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden; and Materials Engineering Department, School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad 44000, Pakistan
Sadaf Jamil-Rana*
Affiliation:
Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
Omer Nur
Affiliation:
Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
Magnus Willander
Affiliation:
Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
Jun Lu
Affiliation:
Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-58183, Sweden
Lars Hultman
Affiliation:
Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-58183, Sweden
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A facile and reproducible low-temperature (80 °C) solution route has been introduced to synthesize ZnO ellipsoids on silicon substrate without any pretreatment of the substrate or organic/inorganic additives. Scanning electron microscopy, transmission electron microscopy, and x-ray diffraction spectroscopy are performed to analyze the structural evolution, the single crystalline nature, and growth orientation at different stages of the synthetic process. The sequential formation mechanisms of heterogeneous nucleation in primary and secondary crystal growth behaviors have been discussed in detail. The presented results reveal that the morphology of micro/nanostructures with desired features can be optimized. The optical properties of grown structures at different stages were investigated using cathodoluminescence (CL). The monochromatic CL images were recorded to examine the UV and visible band emission contributions from the different positions of the intermediate and final structures of the individual ZnO ellipsoid. Significant enhancement in the defect level emission intensity at the central position of the structure reveals that the quality of the material improves as the reaction time is extended.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kido, J., Kimura, M., and Nagai, K.: Multilayer white light-emitting organic electroluminescent device. Science 267, 1332 (1995).Google Scholar
Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., and Wiesner, U.: Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009).Google Scholar
Israr-Qadir, M., Jamil-Rana, S., Nur, O., Willander, M.,Larsson, L.A., and Holtz, P.O.: Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics. Ceram. Int. 40, 2435 (2014).Google Scholar
Zeng, J., Zhang, Q., Chen, J., and Xia, Y.: A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 10, 30 (2010).Google Scholar
D’Souza, F. and Ito, O.: Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: Electron transfer, sensing, switching, and catalytic applications. Chem. Commun. 33, 4913 (2009).Google Scholar
Chen, P-C., Sukcharoenchoke, S., Ryu, K., Gomez de Arco, L., Badmaev, A., Wang, C., and Zhou, C.: 2,4,6-trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv. Mater. 22, 1900 (2010).Google Scholar
Johnson, J.L., Behnam, A., Pearton, S.J., and Ural, A.: Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks. Adv. Mater. 22, 4877 (2010).Google Scholar
Seeberger, P.H. and Werz, D.B.: Synthesis and medical applications of oligosaccharides. Nature 446, 1046 (2007).Google Scholar
Li, Y.Y., Cunin, F., Link, J.R., Gao, T., Betts, R.E., Reiver, S.H., Chin, V., Bhatia, S.N., and Sailor, M.J.: Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045 (2003).Google Scholar
Schmidt-Mende, L. and MacManus-Driscoll, J.L.: ZnO - nanostructures, defects, and device. Mater. Today 10, 40 (2007).CrossRefGoogle Scholar
Qin, Y., Wang, X., and Wang, Z.L.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809 (2008).Google Scholar
Qin, Y., Yang, R., and Wang, Z.L.: Growth of horizontal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 112, 18734 (2008).Google Scholar
Lee, S.H., Minegishi, T., Park, J.S., Park, S.H., Ha, J-S., Lee, H-J., Lee, H-J., Ahn, S., Kim, J., Jeon, H., and Yao, T.: Ordered arrays of ZnO nanorods grown on periodically polarity-inverted surfaces. Nano Lett. 8, 2419 (2008).Google Scholar
Morber, J.R., Ding, Y., Haluska, M.S., Li, Y., Liu, J.P., Wang, Z.L., and Snyder, R.L.: PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. J. Phys. Chem. B 110, 21672 (2006).Google Scholar
Kong, X.Y. and Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625 (2003).Google Scholar
Lao, J.Y., Huang, J.Y., Wang, D.Z., and Ren, Z.F.: ZnO nanobridges and nanonails. Nano Lett. 3, 235 (2003).Google Scholar
Gao, P.X. and Wang, Z.L.: Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. J. Am. Chem. Soc. 125, 11299 (2003).Google Scholar
Israr, M.Q., Sadaf, J.R., Yang, L.L., Nur, O., Willander, M., Palisaitis, J., and Persson, P.O.A.: Trimming of aqueous chemically grown ZnO nanorods into ZnO nanotubes and their comparative optical properties. Appl. Phys. Lett. 95, 073114 (2009).Google Scholar
Garcia, S.P. and Semancik, S.: Controlling the morphology of zinc oxide nanorods crystallized from aqueous solutions: The effect of crystal growth modifiers on aspect ratio. Chem. Mater. 19, 4016 (2007).Google Scholar
Sadaf, J.R., Israr, M.Q., Kishwar, S., Nur, O., and Willander, M.: White electroluminescence using ZnO nanotubes/GaN heterostructure light-emitting diode. Nanoscale Res. Lett. 5, 957 (2010).Google Scholar
Duan, X., Huang, Y., Agarwal, R., and Lieber, C.M.: Single-nanowire electrically driven lasers. Nature 421, 241 (2003).Google Scholar
Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A., and El-Sayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).Google Scholar
Wang, C., Waje, M., Wang, X., Tang, J.M., and Haddon, R.C.: Proton exchange fuel cells with carbon nanotube based electrodes. Nano Lett. 4, 345 (2004).Google Scholar
Liu, J., Huang, X., Sulieman, K.M., Sun, F., and He, X.: Solution-based growth and optical properties of self-assembled monocrystalline ZnO ellipsoids. J. Phys. Chem. B 110, 10612 (2006).Google Scholar
Zeng, Y., Zhang, T., Fu, W., Yu, Q., Wang, G., Zhang, Y., Sui, Y., Wang, L., Shao, C., Liu, Y., Yang, H., and Zou, G.: Fabrication and optical properties of large-scale nutlike ZnO microcrystals via a low-temperature hydrothermal route. J. Phys. Chem. C 113, 8016 (2009).Google Scholar
Liu, B. and Zeng, H.C.: Hollow ZnO microspheres with complex nanobuilding units. Chem. Mater. 19, 5824 (2007).Google Scholar
Myerson, A.S.: Handbook of Industrial Crystallization, 2nd ed.; Butterworth-Heinemann: Boston, 2001; p. 45.Google Scholar
Turnbull, D. and Vonnegut, B.: Nucleation catalysis. Ind. Eng. Chem. 44, 1292 (1952).CrossRefGoogle Scholar
Wang, B.G., Shi, E.W., and Zhong, W.Z.: Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions. Cryst. Res. Technol. 33, 937 (1998).3.0.CO;2-8>CrossRefGoogle Scholar
Jiang, P., Zhou, J-J., Fang, H-F., Wang, C-Y., Wang, Z.L., and Xie, S-S.: Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv. Funct. Mater. 17, 1303 (2007).Google Scholar
Gao, Y-F., Miao, H-Y., Luo, H-J., Nagai, M., and Shyue, J-J.: Morphological and crystallographic transformation of ZnO in solution. J. Phys. Chem. C 112, 1498 (2008).Google Scholar
Jamil-Rana, S., Israr-Qadir, M., Nur, O., and Willander, M.: Naturally oxidized synthesis of ZnO dahlia-flower nanoarchitecture. Ceram. Int. 40, 13667 (2014).Google Scholar
Zhang, D-F., Sun, L-D., Zhang, J., Yan, Z-G., and Yan, C-H.: Hierarchical construction of ZnO architectures promoted by heterogeneous nucleation. Cryst. Growth Des. 8, 3609 (2008).Google Scholar
Djurišić, A.B., Leung, Y.H., Tam, K.H., Hsu, Y.F., Ding, L., Ge, W.K., Zhong, Y.C., Wong, K.S., Chan, W.K., Tam, H.L., Cheah, K.W., Kwok, W.M., and Phillips, D.L.: Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007).Google Scholar
Panigrahy, B., Aslam, M., Misra, D.S., Ghosh, M., and Bahadur, D.: Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater. 20, 1161 (2010).Google Scholar
Willander, M., Israr, M.Q., Rana, S.J., and Nur, O.: Progress on one-dimensional zinc oxide nanomaterials based photonic devices. Nanophotonics 1, 99 (2012).Google Scholar
Klingshirn, C.: ZnO: From basics towards applications. Phys. Status Solidi B 244, 3027 (2007).CrossRefGoogle Scholar
Zhao, Q.X., Klason, P., Willander, M., Zhong, H.M., Lu, W., and Yang, J.H.: Deep-level emissions influenced by O and Zn implantations in ZnO. Appl. Phys. Lett. 87, 211912 (2005).Google Scholar
Sun, Y., Fuge, G.M., Fox, N.A., Riley, D.J., and Ashfold, M.N.R.: Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film. Adv. Mater. 17, 2477 (2005).Google Scholar