Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T22:12:50.076Z Has data issue: false hasContentIssue false

Carbon nanotubes grown in situ by a novel catalytic method

Published online by Cambridge University Press:  31 January 2011

A. Peigney
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, 31062 Toulouse Cedex, France
Ch. Laurent
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, 31062 Toulouse Cedex, France
F. Dobigeon
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, 31062 Toulouse Cedex, France
A. Rousset
Affiliation:
Laboratoire de Chimie des Matériaux Inorganiques, ESA CNRS 5070, Université Paul-Sabatier, 31062 Toulouse Cedex, France
Get access

Abstract

Carbon nanotubes can be produced by the catalytic decomposition of hydrocarbons on small metal particles. However, nanotubes are generally produced together with non-tubular filaments and tubes coated by pyrolytic carbon. We propose a novel catalyst method for the in situ production, in a composite powder, of a huge amount of single- and multiwalled carbon nanotubes, having a diameter between 1.5 and 15 nm and arranged in bundles up to 100 μm long. We anticipate that dense materials prepared from such composite powders could have interesting mechanical and physical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, S., Nature (London) 354, 5658 (1991).CrossRefGoogle Scholar
2.Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220222 (1992).CrossRefGoogle Scholar
3.Ebbesen, T. W., Ajayan, P. M., Hiura, H., and Tanigaki, K., Nature (London) 367, 519 (1992).CrossRefGoogle Scholar
4.Iijima, S. and Ichihashi, T., Nature (London) 363, 603605 (1993).CrossRefGoogle Scholar
5.Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vasquez, J., and Beyers, R., Nature (London) 363, 605607 (1993).CrossRefGoogle Scholar
6.Seraphin, S. and Zhou, D., Appl. Phys. Lett. 64, 20872089 (1994).CrossRefGoogle Scholar
7.Ebbesen, T. W., Annu. Rev. Mater. Sci. 24, 235264 (1994).CrossRefGoogle Scholar
8.Baker, R. T. K., Harris, P. S., Thomas, R. B., and Waite, R. J., J. Catal. 30, 8695 (1973).CrossRefGoogle Scholar
9.Baker, R. T. K., Harris, P. S., and Terry, S., Nature (London) 253, 3739 (1975).CrossRefGoogle Scholar
10.Oberlin, A., Endo, M., and Koyama, T., J. Cryst. Growth 32, 335349 (1976).CrossRefGoogle Scholar
11.Tibbetts, G. G., J. Cryst. Growth 66, 632638 (1984).CrossRefGoogle Scholar
12.Baker, R. T. K. and Rodriguez, N. M., in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W. E., Shaw, T. M., Gottschall, R. J., and Chen, Y. (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), pp. 251256.Google Scholar
13.Benissad, F., Gadelle, P., Coulon, M., and Bonnetain, L., Carbon 26, 6169 (1988).CrossRefGoogle Scholar
14.Rodriguez, N. M., J. Mater. Res. 8, 32333250 (1993).CrossRefGoogle Scholar
15.José-Yacaman, M., Miki-Yoshida, M., Rendon, L., and Santiesteban, J. G., Appl. Phys. Lett. 62, 657660 (1993).CrossRefGoogle Scholar
16.Ivanov, V., Fonseca, A., Nagy, J. B., Lucas, A., Lambin, P., Bernaerts, D., and Zhang, X. B., Carbon 33, 17271738 (1995).CrossRefGoogle Scholar
17.Endo, M., Takeuchi, K., Kobori, K., Takahashi, K., Kroto, H. W., and Sarkar, A., Carbon 33, 873881 (1995).CrossRefGoogle Scholar
18.Devaux, X., Laurent, Ch., Brieu, M., and Rousset, A., J. All. Comp. 188, 179181 (1992).CrossRefGoogle Scholar
19.Devaux, X., Laurent, Ch., and Rousset, A., Nanostruct. Mater. 2, 339346 (1993).CrossRefGoogle Scholar
20.Laurent, Ch., Blaszczyk, Ch., Brieu, M., and Rousset, A., Nanostruct. Mater. 6, 317320 (1995).CrossRefGoogle Scholar
21.Laurent, Ch. and Rousset, A., Key Eng. Mater. 108–110, 405422 (1995).CrossRefGoogle Scholar
22.Ebbesen, T. W., Hiura, H., Fujita, J., Ochiai, Y., Matsui, S., and Tanigaki, K., Chem. Phys. Lett. 209, 8390 (1993).CrossRefGoogle Scholar
23.Ge, M. and Sattler, K., in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W. E., Shaw, T. M., Gottschall, R. J., and Chen, Y. (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), pp. 313317.Google Scholar