Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T18:48:51.744Z Has data issue: false hasContentIssue false

Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording

Published online by Cambridge University Press:  03 March 2011

J.A. Kalb*
Affiliation:
I. Physikalisches Institut der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen, 52056 Aachen, Germany; Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138; and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. Wuttig
Affiliation:
I. Physikalisches Institut der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen, 52056 Aachen, Germany
F. Spaepen*
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: [email protected]
b)This author was Chair of the JMR Advisory Review Board during the review and decision stage.
Get access

Abstract

Sputtered amorphous Ge4Sb1Te5, Ge1Sb2Te4, Ge2Sb2Te5, and Ag0.055In0.065Sb0.59Te0.29 thin films were studied by differential scanning calorimetry. Upon continuous heating, heat release due to structural relaxation of the amorphous phase between 0.5 and 1.0 kJ/mol was observed. This value depends on the thermal history of the sample. Preannealing of the amorphous phase revealed the glass transition temperature Tg within 10 K of the crystallization temperature upon continuous heating at 40 K/min.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yamada, N.: Erasable phase-change optical materials. MRS Bull. 21(9), 48 (1996).CrossRefGoogle Scholar
2Hudgens, S. and Johnson, B.: Overview of phase-change chalcogenide nonvolatile memory technology. MRS Bull. 29(11), 829 (2004).CrossRefGoogle Scholar
3Wamwangi, D., Njoroge, W.K., and Wuttig, M.: Crystallization kinetics of Ge4Sb1Te5 films. Thin Solid Films 408, 310 (2002).Google Scholar
4Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., and Wuttig, M.: Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130 (2000).Google Scholar
5Njoroge, W.K. and Wuttig, M.: Crystallization kinetics of sputter-deposited amorphous AgInSbTe films. J. Appl. Phys. 90, 3816 (2001).Google Scholar
6Christian, J.W.: The Theory of Transformations in Metals and Alloys 2nd ed. (Pergamon, North-Holland, Amsterdam, The Netherlands, 1975).Google Scholar
7Herlach, D.M.: Non-equilibrium solidification of undercooled metallic melts. Mater. Sci. Eng., R 12, 177 (1994).CrossRefGoogle Scholar
8Turnbull, D.: Phase changes. Solid State Phys. 3, 225 (1956).CrossRefGoogle Scholar
9Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).Google Scholar
10Thompson, C.V., Greer, A.L., and Spaepen, F.: Crystal nucleation in amorphous (Au100−yCuy)77Si9Ge14 alloys. Acta Metall. 31, 1883 (1983).Google Scholar
11Thompson, C.V. and Spaepen, F.: Homogeneous crystal nucleation in binary metallic melts. Acta Metall. 31, 2021 (1983).CrossRefGoogle Scholar
12Kelton, K.F.: Crystal nucleation in liquids and glasses. Solid State Phys. 45, 75 (1991).Google Scholar
13Peng, C., Cheng, L., and Mansuripur, M.: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical-recording media. J. Appl. Phys. 82, 4183 (1997).CrossRefGoogle Scholar
14Sheila, A.C. and Schlesinger, T.E.: Modeling thermal cross talk and overwrite jitter in growth dominant phase change optical-recording media at high data rates. J. Appl. Phys. 91, 2803 (2002).CrossRefGoogle Scholar
15Meinders, R., Borg, H.J., Lankhorst, M.H.R., Hellmig, J., and Mijritskii, A.V.: Numerical simulation of mark formation in dual-stack phase-change recording. J. Appl. Phys. 91, 9794 (2002).CrossRefGoogle Scholar
16Senkader, S. and Wright, C.D.: Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J. Appl. Phys. 95, 504 (2004).Google Scholar
17Elliott, S.R.: Physics of Amorphous Materials (Longman, London, UK, 1984).Google Scholar
18Spaepen, F.: Physics of Defects, Les Houches Lectures XXXV, edited by Balian, R., Kleman, M. and Poirier, J-P. (North–Holland, Amsterdam, The Netherlands, 1981), p. 133.Google Scholar
19Spaepen, F. and Turnbull, D.: Metallic glasses. Annu. Rev. Phys. Chem. 35, 241 (1984).CrossRefGoogle Scholar
20Lankhorst, M.H.R.: Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials. J. Non-Cryst. Solids 297, 210 (2002).Google Scholar
21Kalb, J., Spaepen, F., and Wuttig, M.: Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 93, 2389 (2003).CrossRefGoogle Scholar
22Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K., and Takao, M.: High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. Suppl. 26–4, 61 (1987).CrossRefGoogle Scholar
23Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., and Takao, M.: Rapid phase transitions of GeTe–Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 (1991).Google Scholar
24Pedersen, T.P. Leervad, Kalb, J., Njoroge, W.K., Wamwangi, D., Wuttig, M., and Spaepen, F.: Mechanical stresses upon crystallization in phase change materials. Appl. Phys. Lett. 79, 3597 (2001).CrossRefGoogle Scholar
25Morales-Sanchez, E., Prokhorov, E.F., Mendoza-Galvan, A., and Gonzalez-Hernandez, J.: Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films. J. Appl. Phys. 91, 697 (2002).Google Scholar
26Kalb, J.A., Spaepen, F., and Wuttig, M.: Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 054910 (2005).CrossRefGoogle Scholar
27Friedrich, I., Weidenhof, V., Lenk, S., and Wuttig, M.: Morphology and structure of laser-modified Ge2Sb2Te5 films studied by transmission electron microscopy. Thin Solid Films 389, 239 (2001).Google Scholar
28Kalb, J., Spaepen, F., Pedersen, T.P. Leervad, and Wuttig, M.: Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 94, 4908 (2003).Google Scholar
29Gan, F.X., Xue, S.S., and Fan, Z.X.: Metastable phase formation and structural change characteristics of vapor deposited semiconductor films. Ann. Phys. 1, 391 (1992).Google Scholar
30Kalb, J.A., Wen, C.Y., Spaepen, F., Dieker, H., and Wuttig, M.: Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. J. Appl. Phys. 98, 054902 (2005).CrossRefGoogle Scholar
31Kalb, J., Spaepen, F., and Wuttig, M.: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240 (2004).CrossRefGoogle Scholar
32Wu, T-W. and Spaepen, F.: The relation between enbrittlement and structural relaxation in an amorphous metal. Philos. Mag. B 61, 739 (1990).CrossRefGoogle Scholar
33Moynihan, C.T., Macedo, P.B., Montrose, C.J., Gupta, P.K., DeBolt, M.A., Dill, J.F., Dom, B.E., Drake, P.W., Easteal, A.J., Elterman, P.B., Moeller, R.P., Sasabe, H., and Wilder, J.A.: Structural relaxation in vitreous materials. Ann. N. Y. Acad. Sci. 279, 15 (1976).Google Scholar
34Stephens, R.B.: The viscosity and structural relaxation rate of evaporated amorphous selenium. J. Appl. Phys. 49, 5855 (1978).Google Scholar
35Roorda, S., Doorn, S., Sinke, W.C., Scholte, P.M.L.O., and van Loenen, E.: Calorimetric evidence for structural relaxation in amorphous silicon. Phys. Rev. Lett. 62, 1880 (1989).Google Scholar
36Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M., and Jacobson, D.C.: Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion implantation. J. Appl. Phys. 57, 1795 (1985).CrossRefGoogle Scholar
37Donovan, E.P., Spaepen, F., Poate, J.M., and Jacobson, D.C.: Homogeneous and interfacial heat releases in amorphous silicon. Appl. Phys. Lett. 55, 1516 (1989).CrossRefGoogle Scholar
38Jeong, T.H., Kim, M.R., Seo, H., Kim, S.J., and Kim, S.Y.: Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films. J. Appl. Phys. 86, 774 (1999).Google Scholar
39Njoroge, W.K.: Phase change optical recording–preparation and x-ray characterization of GeSbTe and AgInSbTe films. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany (2001).Google Scholar
40Pedersen, T.P. Leervad: Mechanical stresses upon phase transitions. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany (2003).Google Scholar
41Seo, H., Jeong, T-H., Park, J-W., Yeon, C., Kim, S-J., and Kim, S-Y.: Investigation of crystallization behavior of sputter-deposited nitrogen-doped amorphous Ge2Sb2Te5 thin films. Jpn. J. Appl. Phys. 39, 745 (2000).Google Scholar
42Chiang, D., Jeng, T-R., Huang, D-R., Chang, Y-Y., and Liu, C-P.: Kinetic crystallization behavior of phase-change medium. Jpn. J. Appl. Phys. 38, 1649 (1999).CrossRefGoogle Scholar
43Park, J., Kim, M.R., Choi, W.S., Seo, H., and Yeon, C.: Characterization of amorphous phases of Ge2Sb2Te5 phase-change optical recording material on their crystallization behavior. Jpn. J. Appl. Phys. 38, 4775 (1999).CrossRefGoogle Scholar
44Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).Google Scholar
45Iwasaki, H., Harigaya, M., Nonoyama, O., Kageyama, Y., Takahashi, M., Yamada, K., Deguchi, H., and Ide, Y.: Completely erasable phase change optical disc II: Application of Ag–In–Sb–Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity. Jpn. J. Appl. Phys. 32(Pt. 1), 5241 (1993).CrossRefGoogle Scholar