Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T20:02:47.889Z Has data issue: false hasContentIssue false

Calligraphic solar cells: acknowledging paper and pencil

Published online by Cambridge University Press:  23 August 2016

Mallika Dasari
Affiliation:
Department of Chemistry, Southern Illinois University, Carbondale, IL 62901, USA
Pradeep Ramiah Rajasekaran
Affiliation:
Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
Ratnasabapathy Iyer
Affiliation:
Department of Chemistry, Claflin University, Orangeburg, SC 29115, USA
Punit Kohli*
Affiliation:
Department of Chemistry, Southern Illinois University, Carbondale, IL 62901, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We demonstrate fabrication and characterization of photovoltaic (PV) devices made using pencil, paper, and commonly available economical chemicals with a power conversion efficiency of ∼1.8%. The current collecting electrode of the device composed of multilayered graphene (MuLG) was hand-drawn on the cellulosic paper using an H2B pencil. CdSe quantum dots (QD) were used for charge generation, and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) as a bridging molecule to facilitate transfer of the photo-induced charges to the electrodes through MuLG. MuLG acted both as charge carrier and current collector electrode. The device fabrication and testing were accomplished in a wet lab under ambient conditions with minimum use of sophisticated instrumentation. The materials and devices were characterized using UV–visible, fluorescence, x-ray diffraction spectroscopy, and scanning and transmission electron microscopy. IV characteristics of the PV devices fabricated on paper and polyester transparency substrates were performed using a solar simulator (AM 1.5) under ambient wet laboratory conditions. The use of pencil and paper makes the device fabrication simple, environmentally responsible, and accessible to layperson thus opening a new window for low cost PV and opto-electronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lewis, N.S. and Nocera, D.G.: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729 (2006).Google Scholar
Rodhe, H.: A comparison of the contribution of various gases to the greenhouse effect. Science 248, 1217 (1990).Google Scholar
Stainforth, D.A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., and Piani, C.: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403 (2005).Google Scholar
Carlson, D.E. and Wronski, C.R.: Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671 (1976).Google Scholar
Keppner, H., Meier, J., Torres, P., Fischer, D., and Shah, A.: Microcrystalline silicon and micromorph tandem solar cells. Appl. Phys. A: Mater. Sci. Process. 69, 169 (1999).Google Scholar
Lewis, N.S.: Toward cost-effective solar energy use. Science 315, 798 (2007).Google Scholar
O'Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353, 737 (1991).Google Scholar
Singh, E. and Nalwa, H.S.: Stability of graphene-based heterojunction solar cells. RSC Adv. 5, 73575 (2015).Google Scholar
Bernardi, M., Lohrman, J., Kumar, P.V., Kirkeminde, A., Ferralis, N., Grossman, J.C., and Ren, S.: Nanocarbon-based photovoltaics. ACS Nano 6, 8896 (2012).Google Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.H., Kim, P., Choi, J.Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).Google Scholar
Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).Google Scholar
Singh, E. and Nalwa, H.S.: Graphene-based dye-sensitized solar cells: A review. Sci. Adv. Mater. 7, 1863 (2015).CrossRefGoogle Scholar
Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., and Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723 (2010).Google Scholar
Singh, E. and Nalwa, H.S.: Graphene-based bulk-heterojunction solar cells: A review. J. Nanosci. Nanotechnol. 15, 6237 (2015).Google Scholar
Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., and Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337 (2010).Google Scholar
Wang, Y., Shao, Y., Matson, D.W., Li, J., and Lin, Y.: Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790 (2010).Google ScholarPubMed
Huang, L., Huang, Y., Liang, J., Wan, X., and Chen, Y.: Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675 (2011).Google Scholar
Ruecha, N., Rangkupan, R., Rodthongkum, N., and Chailapakul, O.: Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 52, 1319 (2014).Google Scholar
Kong, F.Y., Gu, S.X., Li, W.W., Chen, T.T., Xu, Q., and Wang, W.: A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosens. Bioelectron. 56, 77 (2014).Google Scholar
Hu, L., Wu, H., and Cui, Y.: Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl. Phys. Lett. 96, 183502 (2010).Google Scholar
Zheng, G., Hu, L., Wu, H., Xie, X., and Cui, Y.: Paper supercapacitors by a solvent-free drawing method. Energy Environ. Sci. 4, 3368 (2011).Google Scholar
Liang, X., Xiaogan, Z., and Chou, S.Y.: Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7, 3840 (2007).Google Scholar
Brus, V.V. and Maryanchuk, P.D.: Photosensitive Schottky-type heterojunctions prepared by the drawing of graphite films. Appl. Phys. Lett. 104, 173501 (2014).Google Scholar
Fang, Z., Zhu, H., Yuan, Y., Ha, D., Zhu, S., Preston, C., Chen, Q., Li, Y., Han, X., Lee, S., and Chen, G.: Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14, 765 (2014).Google Scholar
Fujisaki, Y., Koga, H., Nakajima, Y., Nakata, M., Tsuji, H., Yamamoto, T., Kurita, T., Nogi, M., and Shimidzu, N.: Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 24, 1657 (2014).Google Scholar
Wang, B. and Kerr, L.L.: Dye sensitized solar cells on paper substrates. Sol. Energy Mater. Sol. Cells 95, 2531 (2011).Google Scholar
Barr, M.C., Rowehl, J.A., Lunt, R.R., Xu, J., Wang, A., Boyce, C.M., Im, S.G., Bulović, V., and Gleason, K.K.: Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 23, 3500 (2011).Google Scholar
Kurra, N. and Kulkarni, G.U.: Pencil-on-paper: Electronic devices. Lab Chip 13, 2866 (2013).Google Scholar
Weaver, J., Zakeri, R., Aouadi, S., and Kohli, P.: Synthesis and characterization of quantum dot–polymer composites. J. Mater. Chem. 19, 3198 (2009).Google Scholar
Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).Google Scholar
Dharmadasa, I.M.: Latest developments in CdTe, CuInGaSe2 and GaAs/AlGaAs thin film PV solar cells. Curr. Appl. Phys. 9, e2 (2009).Google Scholar
Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissörtel, F., Salbeck, J., Spreitzer, H., and Gratzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).CrossRefGoogle Scholar
Günes, S., Serap, H., and Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324 (2007).Google Scholar
Krebs, F.C.: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394 (2009).Google Scholar
Chou, T.P., Zhang, Q., Fryxell, G.E., and Cao, G.Z.: Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv. Mater. 19, 2588 (2007).Google Scholar
Reynolds, K.J., Barker, J.A., Greenham, N.C., Friend, R.H., and Frey, G.L.: Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. J. Appl. Phys. 92, 7556 (2002).Google Scholar
Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).Google Scholar
Brus, L.: Quantum crystallites and nonlinear optics. Appl. Phys. A: Solids Surf. 53, 465 (1991).Google Scholar
Swinehart, D.F.: The beer-lambert law. J. Chem. Educ. 39, 333 (1962).Google Scholar
Yu, W.W., Qu, L., Guo, W., and Peng, X.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854 (2003).Google Scholar
Sun, J. and Goldys, E.M.: Linear absorption and molar extinction coefficients in direct semiconductor quantum dots. J. Phys. Chem. C 112, 9261 (2008).Google Scholar
Partoens, B. and Peeters, F.M.: From graphene to graphite: Electronic structure around the K point. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 075404 (2006).Google Scholar
Xu, B. and Poduska, K.M.: Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals. Phys. Chem. Chem. Phys. 16, 17634 (2014).Google Scholar
Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J.: Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941 (2011).Google Scholar
Garvey, C.J., Parker, I.H., and Simon, G.P.: On the interpretation of x-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol. Chem. Phys. 206, 1568 (2005).CrossRefGoogle Scholar
Rahman, M.A., Halfar, J., and Shinjo, R.: X-ray diffraction is a promising tool to characterize coral skeletons. Adv. Mater. Phys. Chem. 3, 120 (2013).CrossRefGoogle Scholar
Keizer, J.: Nonlinear fluorescence quenching and the origin of positive curvature in Stern–Volmer plots. J. Am. Chem. Soc. 105, 1494 (1983).Google Scholar
Weaver, J.E., Dasari, M.R., Datar, A., Talapatra, S., and Kohli, P.: Investigating photoinduced charge transfer in carbon Nanotube−Perylene−quantum dot hybrid nanocomposites. ACS Nano 4, 6883 (2010).Google Scholar
Pan, B., Cui, D., Ozkan, C.S., Ozkan, M., Xu, P., Huang, T., Liu, F., Chen, H., Li, Q., He, R., and Gao, F.: Effects of carbon nanotubes on photoluminescence properties of quantum dots. J. Phys. Chem. C 112, 939 (2008).Google Scholar
Geyer, S., Porter, V.J., Halpert, J.E., Mentzel, T.S., Kastner, M.A., and Bawendi, M.G.: Charge transport in mixed CdSe and CdTe colloidal nanocrystal films. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 155201 (2010).Google Scholar
Xu, Y.X., Sheng, K.X., Li, C., and Shi, G.Q.: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324 (2010).Google Scholar
Stocker, T., Kohler, A., and Moos, R.: Why does the electrical conductivity in PEDOT:PSS decrease with PSS content? A study combining thermoelectric measurements with impedance spectroscopy. J. Polym. Sci., Part B: Polym. Phys. 50, 976 (2012).Google Scholar
Kim, Y.J., Park, C.E., and Chung, D.S.: Interface engineering of a highly sensitive solution processed organic photodiode. Phys. Chem. Chem. Phys. 16, 18472 (2014).Google Scholar
Baskoutas, S. and Terzis, A.F.: Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708 (2006).Google Scholar
Tvrdy, K., Frantsuzov, P.A., and Kamat, P.V.: Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl. Acad. Sci. 108, 29 (2011).Google Scholar
Liu, J., Yang, W., Li, Y., Fan, L., and Li, Y.: Electrochemical studies of the effects of the size, ligand and composition on the band structures of CdSe, CdTe and their alloy nanocrystals. Phys. Chem. Chem. Phys. 16, 4778 (2014).Google Scholar
Smith, A.M., Mohs, A.M., and Nie, S.: Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56 (2009).Google Scholar
Klein, D.L., Roth, R., Lim, A.K., P Alivisatos, A., and McEuen, P.L.: A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699 (1997).Google Scholar
Minot, E.D., Kelkensberg, F., Van Kouwen, M., Van Dam, J.A., Kouwenhoven, L.P., Zwiller, V., Borgström, M.T., Wunnicke, O., Verheijen, M.A., and Bakkers, E.P.: Single quantum dot nanowire LEDs. Nano Lett. 7, 367 (2007).Google Scholar
Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435 (2005).CrossRefGoogle ScholarPubMed
Huynh, W.U., Dittmer, J.J., and Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).Google Scholar
Sachtler, W.M.H., Dorgelo, G.J.H., and Holscher, A.A.: The work function of gold. Surf. Sci.: 5, 221 (1966).Google Scholar
Oku, T., Takeda, A., Nagata, A., Noma, T., Suzuki, A., and Kikuchi, K.: Fabrication and characterization of fullerene-based bulk heterojunction solar cells with porphyrin, CuInS2, diamond and exciton-diffusion blocking layer. Energies 3, 671 (2010).Google Scholar
Tongay, S., Schumann, T., and Hebard, A.F.: Graphite based Schottky diodes formed on Si, GaAs, and 4H-SiC substrates. Appl. Phys. Lett. 95, 222103 (2009).Google Scholar
Yu, Y.J., Zhao, Y., Ryu, S., Brus, L.E., Kim, K.S., and Kim, P.: Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430 (2009).Google Scholar
Ye, Y., Gan, L., Dai, L., Dai, Y., Guo, X., Meng, H., Yu, B., Shi, Z., Shang, K., and Qin, G.: A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Nanoscale 3, 1477 (2011).Google Scholar
Brus, V.V., Maryanchuk, P.D., Ilashchuk, M.I., Rappich, J., Babichuk, I.S., and Kovalyuk, Z.D.: Graphitic carbon/n-CdTe Schottky-type heterojunction solar cells prepared by electron-beam evaporation. Sol. Energy 112, 78 (2015).Google Scholar
Giovannetti, G.A., Khomyakov, P.A., Brocks, G., Karpan, V.M., van den Brink, J., and Kelly, P.J.: Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).Google Scholar
Khomyakov, P.A., Giovannetti, G., Rusu, P.C., Brocks, G., van den Brink, J., and Kelly, P.J.: First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 195425 (2009).Google Scholar
Kyas, A., Fleischhauer, J., Steinmetz, E., and Wilhelmi, H.: Investigations concerning the work function of doped graphite. Plasma Chem. Plasma Process. 13, 223 (1993).Google Scholar
Hölzl, J. and Schulte, F.K.: Work function of metals. In Solid Surface Physics, Vol. 85, G. Holer, ed. (Springer-Verlag, Berlin, 1979); p. 126.Google Scholar
Kautsky, H.: Quenching of luminescence by oxygen. Trans. Faraday Soc. 35, 216 (1939).Google Scholar
Martel, R., Derycke, V., Lavoie, C., Appenzeller, J., Chan, K.K., Tersoff, J., and Avouris, Ph.: Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001).Google Scholar
Ikai, M., Tokito, S., Sakamoto, Y., Suzuki, T., and Taga, Y.: Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl. Phys. Lett. 79, 156 (2001).Google Scholar
Supplementary material: PDF

Dasari supplementary material

Dasari supplementary material 1

Download Dasari supplementary material(PDF)
PDF 857.8 KB