Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:40:53.960Z Has data issue: false hasContentIssue false

Buried oxide layers formed by low-dose oxygen implantation

Published online by Cambridge University Press:  31 January 2011

S. Nakashima
Affiliation:
Nippon Telegraph and Telephone Corporation, LSI Laboratories, 3-1 Morinosato Wakamiya, Atsugi-shi, 243-01, Japan
K. Izumi
Affiliation:
Nippon Telegraph and Telephone Corporation, LSI Laboratories, 3-1 Morinosato Wakamiya, Atsugi-shi, 243-01, Japan
Get access

Abstract

The structure of buried oxide layers formed by low-dose 16O+ implantation of 0.4 and 0.7 × 1018 cm−2 at 180 keV and by subsequent annealing in the temperature range of 1150 to 1350 °C has been investigated using cross-sectional transmission electron microscopy (XTEM). At a dose of 0.4 × 1018 cm−2, an 80-nm continuous uniform buried oxide layer having a breakdown voltage of approximately 40 V is formed after annealing at 1350 °C. At a dose of 0.7 × 1018 cm−2, multiple buried oxide layers having Si islands between them are formed at an anneal temperature of 1150 °C. The number of multiple layers is reduced as the annealing temperature increases, but the Si islands do not dissolve even after annealing at 1350 °C. The existence of the Si islands causes the breakdown voltage to fall to 0 V despite the higher dose.

Type
Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Izumi, K., Doken, M., and Ariyoshi, H., Electron. Lett. 14, 593 (1978).Google Scholar
2.Sturm, J. C., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J. C., Chen, C. K., Pfeiffer, L., and Hemment, P. L. F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 295.Google Scholar
3.Nakashima, S. and Izumi, K., Electron. Lett. 26 (20), 1647 (1990).Google Scholar
4.Lam, H.W., Pinizzoto, R.F., Yuan, H.T., and Bellavance, D.W., Electron. Lett. 17, 356(1981).Google Scholar
5.White, A.E., Short, K. T., Batstone, J. L., Jacobson, D. C., Poate, J. M., and West, K. W., Appl. Phys. Lett. 50 (1), 19 (1987).Google Scholar
6.Gibbons, J. F., Johnson, W. S., and Mylroi, S.W., Projected Range Statistics (John Wiley and Sons Inc., New York, 1975).Google Scholar
7.Burke, J., The Kinetics of Phase Transformation in Metals (Pergamon Press, New York, 1965).Google Scholar
8.Stoemenos, J., Thin Solid Films 135, 115 (1986).Google Scholar
9.Stoemenos, J., Appl. Phys. Lett. 48 (21), 1470 (1986).Google Scholar
10.Brebec, G., Seguin, R., Sella, C., Bevenot, J., and Martin, C., Acta Metall. 28, 327 (1980).CrossRefGoogle Scholar
11.Hemment, P. L. F., Reeson, K. J., Kiler, J. A., Chater, R. J., Marsh, C., Booker, G. R., Celler, G. K., and Stoemenos, J., Vacuum 36 (11/12), 877 (1986).Google Scholar