Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:46:56.743Z Has data issue: false hasContentIssue false

Bromination and cyanation for improving electron transport performance of anthra-tetrathiophene

Published online by Cambridge University Press:  29 January 2016

Jun Yin
Affiliation:
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, People's Republic of China
Kadali Chaitanya
Affiliation:
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, People's Republic of China
Xue-Hai Ju*
Affiliation:
Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The charge transport properties of anthra-tetrathiophene (ATT) and its brominated and cyanated derivatives (TBATT and TCATT) were investigated by the density functional theory (DFT) coupled with incoherent charge-hopping model. The crystal structure of TCATT is predicted by the dispersion-corrected DFT (DFT-D) method, and those of ATT and TBATT are retrieved from the Cambridge Crystallographic Data Center. The introduction of electron-withdrawing substituents of bromine and cyano decreases the frontier molecular orbital energies but increases the electron affinities, which is beneficial to electron injection and guarantees charge carrier stabilization. The π–π stacking of neighbor molecules with a short distance and large coupling area contributes to the largest transfer integral. The predicted electron mobility of TCATT reaches up to 1.851 cm2/(V·s), indicating that the cyanation of ATT is favorable for improving the electron transport. The angular dependent simulation for electron mobility shows that the electron transport is remarkably anisotropic.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Klauk, H., Zschieschang, U., Pflaum, J., and Halik, M.: Ultralow-power organic complementary circuits. Nature 445(7129), 745 (2007).Google Scholar
Arias, C., MacKenzie, J.D., McCulloch, I., Rivnay, J., and Salleo, A.: Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110(1), 3 (2010).CrossRefGoogle Scholar
Newman, C.R., Frisbie, C.D., da Silva, D.A., Bredas, J.L., Ewbank, P.C., and Mann, K.R.: Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16(23), 4436 (2004).Google Scholar
Zaumseil, J. and Sirringhaus, H.: Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107(4), 1296 (2007).Google Scholar
Wang, Z., Kim, C., Facchetti, A., and Marks, T.J.: Anthracenedicarboximides as air-stable n-channel semiconductors for thin-film transistors with remarkable current on-off ratios. J. Am. Chem. Soc. 129(44), 13362 (2007).Google Scholar
Sancho-García, J.C., Pérez-Jiménez, A.J., Olivier, Y., and Cornil, J.: Molecular packing and charge transport parameters in crystalline organic semiconductors from first-principles calculations. Phys. Chem. Chem. Phys. 12(32), 9381 (2010).Google Scholar
Takimiya, K., Ebata, H., Sakamoto, K., Izawa, T., Otsubo, T., and Kunugi, Y.: 2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene, A new organic semiconductor for air-stable organic field-effect transistors with mobilities up to 2.0 cm2·V−1·s−1 . J. Am. Chem. Soc. 128(39), 12604 (2006).CrossRefGoogle Scholar
Kanibolotsky, A.L., Perepichka, I.F., and Skabara, P.J.: Star-shaped π-conjugated oligomers and their applications in organic electronics and photonics. Chem. Soc. Rev. 39(7), 2695 (2010).Google Scholar
Liu, W.J., Zhou, Y., Ma, Y., Cao, Y., Wang, J., and Pei, J.: Thin film organic transistors from air-stable heteroarenes: Anthra-[1,2-b:4,3-b′:5,6-b″:8,7-b‴]tetrathiophene derivatives. Org. Lett. 9(21), 4187 (2007).Google Scholar
Brusso, J.L., Hirst, O.D., Dadvand, A., Ganesan, S., Cicoira, F., Robertson, C.M., Oakley, R.T., Rosei, F., and Perepichka, D.F.: Two-dimensional structural motif in thienoacene semiconductors: Synthesis, structure, and properties of tetrathienoanthracene isomers. Chem. Mater. 20(7), 2484 (2008).Google Scholar
Hutchison, G.R., Ratner, M.A., and Marks, T.J.: Hopping transport in conductive heterocyclic oligomers: Reorganization energies and substituent effects. J. Am. Chem. Soc. 127(7), 2339 (2005).CrossRefGoogle ScholarPubMed
Geng, H., Niu, Y., Peng, Q., Shuai, Z., Coropceanu, V., and Brédas, J.L.: Theoretical study of substitution effects on molecular reorganization energy in organic semiconductors. J. Chem. Phys. 135(10), 104703 (2011).Google Scholar
Chai, S., Wen, S.H., Huang, J.D., and Han, K.L.: Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent. J. Comput. Chem. 32(15), 3218 (2011).Google Scholar
Kuo, M.Y., Chen, H.Y., and Chao, I.: Cyanation: Providing a three-in-one advantage for the design of n-type organic field-effect transistors. Chem. - Eur. J. 13(17), 4750 (2007).Google Scholar
Leitch, A.A., Mansour, A., Stobo, K.A., Korobkov, I., and Brusso, J.L.: Functionalized tetrathienoanthracene: Enhancing π-π interactions through expansion of the π-conjugated framework. Cryst. Growth Des. 12(3), 1416 (2012).Google Scholar
Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., and Brédas, J.L.: Charge transport in organic semiconductors. Chem. Rev. 107(4), 926 (2007).Google Scholar
Marcus, R.A.: Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599 (1993).Google Scholar
Kwiatkowski, J.J., Nelson, J., Li, H., Brédas, J.L., Wenzel, W., and Lennartz, C.: Simulating charge transport in tris(8-hydroxyquinoline) aluminium (Alq3). Phys. Chem. Chem. Phys. 10(14), 1852 (2008).CrossRefGoogle Scholar
Malagoli, M. and Brédas, J.L.: Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem. Phys. Lett. 327(1–2), 13 (2000).CrossRefGoogle Scholar
Wang, L.J., Li, P., Xu, B., Zhang, H.Y., and Tian, W.J.: The substituent effect on charge transport property of triisopropylsilylethynyl anthracene derivatives. Org. Electron. 15(10), 2476 (2014).CrossRefGoogle Scholar
Delgado, M.C.R., Kim, E.G., daSilvaFilho, D.A., and Brédas, J.L.: Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: A density functional theory investigation. J. Am. Chem. Soc. 132(10), 3375 (2010).Google Scholar
Song, P. and Ma, F.C.: Tunable electronic structures and optical properties of fluorenone-based molecular materials by heteroatoms. J. Phys. Chem. A 114(5), 2230 (2010).Google Scholar
Li, C.H., Huang, C.H., and Kuo, M.Y.: Halogenated 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene: Applications for ambipolar air-stable organic field-effect transistors. Phys. Chem. Chem. Phys. 13(23), 11148 (2011).Google Scholar
An, D.H., Zhang, M., Li, D.N., Pan, S.L., Chen, H.M., Yang, Z.H., Zhu, Y.T., Sun, Y., Zhang, H., and Li, Y.Y.: Linear and nonlinear optical properties of aluminum borate crystal Al5BO9: Experiment and calculation. J. Mater. Res. 30(18), 2319 (2015).Google Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).Google Scholar
Valeev, E.F., Coropceanu, V., da Silva Filho, D.A., Salman, S., and Brédas, J.L.: Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J. Am. Chem. Soc. 128(30), 9882 (2006).CrossRefGoogle ScholarPubMed
Löwdin, P.: On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365 (1950).CrossRefGoogle Scholar
Gorelsky, S.I., Ghosh, S., and Solomon, E.I.: Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J. Am. Chem. Soc. 128(1), 278 (2006).CrossRefGoogle ScholarPubMed
Huang, J.S. and Kertesz, M.: Validation of intermolecular transfer integral and bandwidth calculations for organic molecular materials. J. Chem. Phys. 122(23), 234707 (2005).Google Scholar
Wen, S.H., Li, A., Song, J.L., Deng, W.Q., Han, K.L., and Goddard, W.A. III: First-principles investigation of anistropic hole mobilities in organic semiconductors. J. Phys. Chem. B 113(26), 8813 (2009).Google Scholar
Accelrys Inc.: Materials Studio, 6.0 V (Accelrys Inc., San Diego, CA, 2010).Google Scholar
Mayo, S.L., Olafson, B.D., and Goddard, W.A. III: Dreiding: A generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897 (1990).CrossRefGoogle Scholar
Cheng, Y.F., Lu, Z.Y., An, L.J., and Zhang, J.P.: From molecules to materials: Molecular and crystal engineering design of organic optoelectronic functional materials for high carrier mobility. J. Phys. Chem. C 116(1), 1195 (2012).CrossRefGoogle Scholar
Ortmann, F., Bechstedt, F., and Schmidt, W.G.: Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B. 73(20), 205101 (2006).CrossRefGoogle Scholar
Zhao, C.B., Wang, W.L., Yin, S.W., and Ma, Y.: Theoretical investigation on electronic, optical, and charge transport properties of 7,8,15,16-tetraazaterrylene and its derivatives with electron-attracting substituents. New J. Chem. 37(9), 2925 (2013).Google Scholar
Yin, J., Chaitanya, K., and Ju, X.H.: Theoretical study of the fluorination effect on charge transport properties in fused thiophene derivatives. RSC Adv. 5(80), 65192 (2015).Google Scholar
Saranya, G., Navamani, K., and Senthilkumar, K.: A theoretical study on optical and charge transport properties of anthra-[1,2-b:4,3-b′:5,6-b″:8,7-b‴]tetrathiophene molecules. Chem. Phys. 443, 48 (2014).Google Scholar
Usta, H., Risko, C., Wang, Z.M., Huang, H., Deliomeroglu, M.K., Zhukhovitskiy, A., Facchetti, A., and Marks, T.J.: Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 131(15), 5586 (2009).Google Scholar
Adiga, S.P. and Shukla, D.: Electronic structure and charge-transport properties of N,N′-bis(cyclohexyl)naphthalene diimide. J. Phys. Chem. C 114(6), 2751 (2010).Google Scholar
Chang, Y.C., Kuo, M.Y., Chen, C.P., Lu, H.F., and Chao, I.: On the air stability of n-channel organic field-effect transistors: A theoretical study of adiabatic electron affinities of organic semiconductors. J. Phys. Chem. C 114(26), 11595 (2010).Google Scholar
Liu, C.C., Mao, S.W., and Kuo, M.Y.: Cyanated pentaceno[2,3-c]chalcogenophenes for potential application in air-stable ambipolar organic thin-film transistors. J. Phys. Chem. C 114(50), 22316 (2010).Google Scholar
Kwiatkowski, J.J., Frost, J.M., and Nelson, J.: The effect of morphology on electron field-effect mobility in disordered C60 thin films. Nano Lett. 9(3), 1085 (2009).Google Scholar
Tang, X.D., Liao, Y., Gao, H.Z., Geng, Y., and Su, Z.M.: Theoretical study of the bridging effect on the charge carrier transport properties of cyclooctatetrathiophene and its derivatives. J. Mater. Chem. 22(14), 6907 (2012).Google Scholar
Schrader, M., Fitzner, R., Hein, M., Elschner, C., Baumeier, B., Leo, K., Riede, M., Bäuerle, P., and Andrienko, D.: Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. J. Am. Chem. Soc. 134(13), 6052 (2012).Google Scholar
Maly, K.E.: Acenes vs n-heteroacenes: The effect of n-substitution on the structural features of crystals of polycyclic aromatic hydrocarbons. Cryst. Growth Des. 11(12), 5628 (2011).Google Scholar
Zhang, X.Y., Zhao, G.J., Huang, J.D., and Zhang, W.P.: Effects of carbon chain on hole-transport properties in naphtho[2,1-b:6,5-b′]difuran derivatives: Remarkable anisotropic mobilities. Org. Electron. 15(11), 3341 (2014).Google Scholar
Hoang, M.H., Kim, Y., Kim, M., Kim, K.H., Lee, T.W., Nguyen, D.N., Kim, S.J., Lee, K., Lee, S.J., and Choi, D.H.: Unusually high-performing organic field-effect transistors based on π-extended semiconducting porphyrins. Adv. Mater. 24(39), 5363 (2012).Google Scholar
Usta, H., Facchtti, A., and Marks, T.J.: n-Channel semiconductor materials design for organic complementary circuits. Acc. Chem. Res. 44(7), 501 (2011).Google Scholar
Zhou, K., Dong, H., Zhang, H.L., and Hu, W.P.: High performance n-type and ambipolar small organic semiconductors for organic thin film transistors. Phys. Chem. Chem. Phys. 16(41), 22448 (2014).Google Scholar
Duan, Y.A., Li, H.B., Geng, Y., Wu, Y., Wang, G.Y., and Su, Z.M.: Theoretical studies on the hole transport property of tetrathienoarene derivatives: The influence of the position of sulfur atom, substituent and π-conjugated core. Org. Electron. 15(2), 602 (2014).Google Scholar
Supplementary material: File

Yin supplementary material

Tables S1-S5

Download Yin supplementary material(File)
File 107 KB