Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T20:10:43.731Z Has data issue: false hasContentIssue false

Bimetallic metal–organic frameworks-derived mesoporous CdxZn1−xS polyhedrons for enhanced photocatalytic hydrogen evolution

Published online by Cambridge University Press:  12 March 2019

Feihu Mu
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China; and School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, People’s Republic of China
Shijian Zhou
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
Yun Wang
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
Jian Wang
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
Yan Kong*
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A bimetallic metal–organic frameworks (MOFs)-templated strategy was developed to fabricate mesoporous CdxZn1−xS polyhedrons with improved photocatalytic hydrogen evolution activity, and the formation mechanism of these mesoporous polyhedrons was discussed in detail. Incorporating Cd atoms, the Brunauer–Emmett–Teller surface areas of mesoporous CdxZn1−xS polyhedrons were significantly increased (271 m2/g), providing more exposed active sites compared with ZnS. In addition, suitable conduction band potential (< −0.55 eV) of the mesoporous CdxZn1−xS polyhedrons was also beneficial for the photocatalysis. Impressively, by the co-effects of mesoporous structure and modified conduction band, the mesoporous CdxZn1−xS polyhedrons exhibited better photocatalytic activity for hydrogen evolution than most reported photocatalysts without noble metals. The maximum hydrogen evolution rate of the CSZ3 reached 4.10 mmol/(h g) under visible-light irradiation and without any cocatalyst condition. This facile strategy for the construction of mesoporous CdxZn1−xS polyhedrons provided a deep insight to fabricate other metal sulfides for a variety of photochemical applications.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huang, Y. and Zhang, B.: Active cocatalysts for photocatalytic hydrogen evolution derived from nickel or cobalt amine complexes. Angew. Chem., Int. Ed. 56, 14804 (2017).CrossRefGoogle ScholarPubMed
Chen, X., Shen, S., Guo, L., and Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).CrossRefGoogle ScholarPubMed
Wang, X., Jing, D., and Ni, M.: Solar photocatalytic energy conversion. Sci. Bull. 62, 597 (2017).CrossRefGoogle Scholar
Shi, R., Cao, Y., Bao, Y., Zhao, Y., Waterhouse, G.I.N., Fang, Z., Wu, L-Z., Tung, C-H., Yin, Y., and Zhang, T.: Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 29, 1700803 (2017).CrossRefGoogle ScholarPubMed
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. nature 238, 37 (1972).CrossRefGoogle Scholar
Schultz, D.M. and Yoon, T.P.: Solar synthesis: Prospects in visible light photocatalysis. Science 343, 1239176 (2014).CrossRefGoogle ScholarPubMed
Song, Y., Li, J., and Wang, C.: Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33, 2612 (2018).CrossRefGoogle Scholar
Han, C., Chen, Z., Zhang, N., Colmenares, J.C., and Xu, Y-J.: Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: Low temperature synthesis and enhanced photocatalytic performance. Adv. Funct. Mater. 25, 221 (2015).CrossRefGoogle Scholar
Zhou, C., Shi, R., Shang, L., Zhao, Y., Waterhouse, G.I.N., Wu, L-Z., Tung, C-H., and Zhang, T.: A sustainable strategy for the synthesis of pyrochlore H4Nb2O7 hollow microspheres as photocatalysts for overall water splitting. ChemPlusChem 82, 181 (2017).CrossRefGoogle Scholar
Zhu, C., Liu, C., Zhou, Y., Fu, Y., Guo, S., Li, H., Zhao, S., Huang, H., Liu, Y., and Kang, Z.: Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Appl. Catal., B 216, 114 (2017).CrossRefGoogle Scholar
Li, Q., Li, X., Wageh, S., Al-Ghamdi, A.A., and Yu, J.: CdS/Graphene nanocomposite photocatalysts. Adv. Energy Mater. 5, 1500010 (2015).CrossRefGoogle Scholar
Shang, L., Tong, B., Yu, H., Waterhouse, G.I.N., Zhou, C., Zhao, Y., Tahir, M., Wu, L-Z., Tung, C-H., and Zhang, T.: CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1501241 (2016).CrossRefGoogle Scholar
Liu, S., Chen, J., Xu, D., Zhang, X., and Shen, M.: Enhanced photocatalytic activity of direct Z-scheme Bi2O3/g-C3N4 composites via facile one-step fabrication. J. Mater. Res. 33, 1391 (2018).CrossRefGoogle Scholar
Giannakoudakis, D.A., Travlou, N.A., Secor, J., and Bandosz, T.J.: Oxidized g-C3N4 nanospheres as catalytically photoactive linkers in MOF/g-C3N4 composite of hierarchical pore structure. Small 13, 1601758 (2017).CrossRefGoogle Scholar
Pan, C., Takata, T., Nakabayashi, M., Matsumoto, T., Shibata, N., Ikuhara, Y., and Domen, K.: A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem., Int. Ed. 54, 2955 (2015).CrossRefGoogle ScholarPubMed
Chen, S., Takata, T., and Domen, K.: Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).CrossRefGoogle Scholar
Zhang, S., Liu, X., Liu, C., Luo, S., Wang, L., Cai, T., Zeng, Y., Yuan, J., Dong, W., Pei, Y., and Liu, Y.: MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12, 751 (2018).CrossRefGoogle Scholar
Li, Q. and Lian, T.: Exciton dissociation dynamics and light-driven H2 generation in colloidal 2D cadmium chalcogenide nanoplatelet heterostructures. Nano Res. 11, 3031 (2018).CrossRefGoogle Scholar
Coughlan, C., Ibanez, M., Dobrozhan, O., Singh, A., Cabot, A., and Ryan, K.M.: Compound copper chalcogenide nanocrystals. Chem. Rev. 117, 5865 (2017).CrossRefGoogle ScholarPubMed
Zhao, H., Ding, X., Zhang, B., Li, Y., and Wang, C.: Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme CdxZn1−xS/Au/g-C3N4 photocatalysts under visible light. Sci. Bull. 62, 602 (2017).CrossRefGoogle Scholar
Gaikwad, A.P., Tyagi, D., Betty, C.A., and Sasikala, R.: Photocatalytic and photo electrochemical properties of cadmium zinc sulfide solid solution in the presence of Pt and RuS2 dual co-catalysts. Appl. Catal., A 517, 91 (2016).CrossRefGoogle Scholar
Sasikala, R., Shirole, A.R., Sudarsan, V., G. Jagannath, , Sudakar, C., Naik, R., Rao, R., and Bharadwaj, S.R.: Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2–Pd nanocomposites for hydrogen generation. Appl. Catal., A 377, 47 (2010).CrossRefGoogle Scholar
Gong, B., Lu, Y., Wu, P., Huang, Z., Zhu, Y., Dang, Z., Zhu, N., Lu, G., and Huang, J.: Enhanced photocatalytic activity over Cd0.5Zn0.5S with stacking fault structure combined with Cu2+ modified carbon nanotubes. Appl. Surf. Sci. 365, 280 (2016).CrossRefGoogle Scholar
Kyne, F., Maguire, S., Obroin, S., Mcging, P., Mccann, S., and Wright, E.: Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem. Commun. 182, 620 (2000).Google Scholar
Fang, Z., Liu, L., Wang, J., and Zhong, X.: Depositing a ZnxCd1−xS shell around CdSe core nanocrystals via a noninjection approach in aqueous media. J. Phys. Chem. C 113, 4301 (2009).CrossRefGoogle Scholar
Fang, X., Zhai, T., Gautam, U.K., Li, L., Wu, L., Bando, Y., and Golberg, D.: ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 56, 175 (2011).CrossRefGoogle Scholar
Jiang, D.C., Sun, Z., Jia, H., Lu, D., and Du, P.: Cocatalyst-free CdS nanorods/ZnS nanoparticles composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 4, 675 (2015).CrossRefGoogle Scholar
Shu, D., Wang, H., Wang, Y., Li, Y., Liu, X., Chen, X., Peng, X., Wang, X., Ruterana, P., and Wang, H.: Composition dependent activity of Fe1−xPtx decorated ZnCdS nanocrystals for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 42, 20888 (2017).CrossRefGoogle Scholar
Levchuk, I., Würth, C., Krause, F., Osvet, A., Batentschuk, M., Resch-Genger, U., Kolbeck, C., Herre, P., Steinrück, H.P., Peukert, W., and Brabec, C.J.: Industrially scalable and cost-effective Mn2+ doped ZnxCd1−xS/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy Environ. Sci. 9, 1083 (2016).CrossRefGoogle Scholar
An, C., Feng, J., Liu, J., Wei, G., Du, J., Wang, H., Jin, S., and Zhang, J.: NiS nanoparticle decorated MoS2 nanosheets as efficient promoters for enhanced solar H2 evolution over ZnxCd1−xS nanorods. Inorg. Chem. Front. 4, 1042 (2017).CrossRefGoogle Scholar
Han, Z., Chen, G., Li, C., Yu, Y., and Zhou, Y.: Preparation of 1D cubic Cd0.8Zn0.2S solid-solution nanowires using levelling effect of TGA and improved photocatalytic H2-production activity. J. Mater. Chem. A 3, 1696 (2014).CrossRefGoogle Scholar
Mei, Z., Zhang, M., Schneider, J., Wang, W., Zhang, N., Su, Y., Chen, B., Wang, S., Rogach, A.L., and Pan, F.: Hexagonal Zn1−xCdxS (0.2 ≤ x ≤ 1) solid solution photocatalysts for H2 generation from water. Catal. Sci. Technol. 7, 982 (2017).CrossRefGoogle Scholar
Su, Y., Zhang, Z., Liu, H., and Wang, Y.: Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl. Catal., B 200, 448 (2017).CrossRefGoogle Scholar
Xing, C., Zhang, Y., Yan, W., and Guo, L.: Band structure-controlled solid solution of Cd1−xCd1−xZnxSZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energy 31, 2018 (2006).CrossRefGoogle Scholar
Chen, J., Chen, J., and Li, Y.: Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation. J. Mater. Chem. A 5, 24116 (2017).CrossRefGoogle Scholar
Zhu, Q.L. and Xu, Q.: Metal–organic framework composites. Chem. Soc. Rev. 43, 5468 (2014).CrossRefGoogle ScholarPubMed
Tian, P., He, X., Li, W., Zhao, L., Fang, W., Chen, H., Zhang, F., Zhang, W., and Wang, W.: Zr-MOFs based on Keggin-type polyoxometalates for photocatalytic hydrogen production. J. Mater. Sci. 53, 12016 (2018).CrossRefGoogle Scholar
Liu, J., Zheng, J., Barpaga, D., Sabale, S., Arey, B., Derewinski, M.A., McGrail, B.P., and Motkuri, R.K.: A tunable bimetallic MOF-74 for adsorption chiller applications. Eur. J. Inorg. Chem. 2018, 885 (2018).CrossRefGoogle Scholar
Fang, G., Zhou, J., Cai, Y., Liu, S., Tan, X., Pan, A., and Liang, S.: Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. J. Mater. Chem. A 5, 13983 (2017).CrossRefGoogle Scholar
Yu, Z., Bai, Y., Liu, Y., Zhang, S., Chen, D., Zhang, N., and Sun, K.: Metal–organic-framework-derived yolk–shell-structured cobalt-based bimetallic oxide polyhedron with high activity for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 9, 31777 (2017).CrossRefGoogle ScholarPubMed
Zhang, P., Guan, B.Y., Yu, L., and Lou, X.W.D.: Formation of double-shelled zinc–cobalt sulfide dodecahedral cages from bimetallic zeolitic imidazolate frameworks for hybrid supercapacitors. Angew. Chem., Int. Ed. 56, 7141 (2017).CrossRefGoogle ScholarPubMed
Huang, Z.F., Song, J., Li, K., Tahir, M., Wang, Y.T., Pan, L., Wang, L., Zhang, X., and Zou, J.J.: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138, 1359 (2016).CrossRefGoogle ScholarPubMed
Qian, J., Li, T.T., Hu, Y., and Huang, S.: A bimetallic carbide derived from a MOF precursor for increasing electrocatalytic oxygen evolution activity. Chem. Commun. 53, 13027 (2017).CrossRefGoogle ScholarPubMed
Huang, M., Mi, K., Zhang, J., Yu, H., Yu, T., Yuan, A., Kong, Q., and Xiong, S.: MOFs-derived Bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 5, 266 (2017).CrossRefGoogle Scholar
Song, F.Z., Zhu, Q.L., Yang, X., Zhan, W.W., Pachfule, P., Tsumori, N., and Xu, Q.: Metal–organic framework templated porous carbon‐metal oxide/reduced graphene oxide as superior support of bimetallic nanoparticles for efficient hydrogen generation from formic acid. Adv. Energy Mater. 8, 1701416 (2017).CrossRefGoogle Scholar
Liu, J., Li, R., Wang, Y., Wang, Y., Zhang, X., and Fan, C.: The active roles of ZIF-8 on the enhanced visible photocatalytic activity of Ag/AgCl: Generation of superoxide radical and adsorption. J. Alloys Compd. 693, 543 (2017).CrossRefGoogle Scholar
Yan, C., Fan, Y.Z., Chen, L., Pan, M., Zhang, L.Y., Jiang, J.J., and Su, C.Y.: Time controlled structural/packing transformation and tunable luminescence of Cd(II)-chloride-triBZ-ntb coordination assemblies: An experimental and theoretical exploration. CrystEngComm 17, 546 (2014).CrossRefGoogle Scholar
Han, L., Yu, X.Y., and Lou, X.W.: formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 28, 4601 (2016).CrossRefGoogle Scholar
Avci, C., Arinez-Soriano, J., Carne-Sanchez, A., Guillerm, V., Carbonell, C., Imaz, I., and Maspoch, D.: Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew. Chem., Int. Ed. 54, 14417 (2015).CrossRefGoogle ScholarPubMed
Indra, A., Song, T., and Paik, U.: Metal organic framework derived materials: Progress and prospects for the energy conversion and storage. Adv. Mater. 30, 1705146 (2018).CrossRefGoogle ScholarPubMed
Yu, X.Y., Yu, L., Wu, H.B., and Lou, X.W.: Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem., Int. Ed. 54, 5331 (2015).CrossRefGoogle ScholarPubMed
Yu, L., Zhang, L., Wu, H.B., and Lou, X.W.: Formation of NixCo3−xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem., Int. Ed. 53, 3711 (2014).CrossRefGoogle ScholarPubMed
Su, Y., Ao, D., Liu, H., and Wang, Y.: MOF-derived yolk–shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution. J. Mater. Chem. A 5, 8680 (2017).CrossRefGoogle Scholar
Zhang, J., Yu, J., Jaroniec, M., and Gong, J.R.: Noble metal-free reduced graphene oxide-ZnxCd1−xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 12, 4584 (2012).CrossRefGoogle Scholar
Fan, C., Wang, X., Sang, H., and Wang, F.: Effects of composition and calcination temperature on photocatalytic evolution over from glycerol and water mixture. Int. J. Photoenergy 2012, 1 (2012).Google Scholar
Jiang, D., Sun, Z., Jia, H., Lu, D., and Du, P.: A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J. Mater. Chem. A 4, 675 (2016).CrossRefGoogle Scholar
Li, Q., Meng, H., Zhou, P., Zheng, Y., Wang, J., Yu, J., and Gong, J.: Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 3, 882 (2013).CrossRefGoogle Scholar
Wang, H., Li, Y., Shu, D., Chen, X., Liu, X., Wang, X., Zhang, J., and Wang, H.: CoPtx‐loaded Zn0.5Cd0.5S nanocomposites for enhanced visible light photocatalytic H2 production. Int. J. Energy Res. 40, 1280 (2016).CrossRefGoogle Scholar
Dai, D., Xu, H., Ge, L., Han, C., Gao, Y., Li, S., and Lu, Y.: In situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation. Appl. Catal., B 217, 429 (2017).CrossRefGoogle Scholar
Guo, X., Chen, C., Song, W., Wang, X., Di, W., and Qin, W.: CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis. J. Mol. Catal. A: Chem. 387, 1 (2014).CrossRefGoogle Scholar
Pany, S. and Parida, K.M.: A facile in situ approach to fabricate N,S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution. Phys. Chem. Chem. Phys. 17, 8070 (2015).CrossRefGoogle ScholarPubMed
Supplementary material: File

Mu et al. supplementary material

Mu et al. supplementary material 1

Download Mu et al. supplementary material(File)
File 3 MB