Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T01:34:30.392Z Has data issue: false hasContentIssue false

Behavior of carbon nanotubes under high pressure and high temperature

Published online by Cambridge University Press:  31 January 2011

D. S. Tang
Affiliation:
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
L. C. Chen
Affiliation:
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
L. J. Wang
Affiliation:
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
L. F. Sun
Affiliation:
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
Z. Q. Liu
Affiliation:
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
G. Wang
Affiliation:
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
W. Y. Zhou
Affiliation:
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
S. S. Xie*
Affiliation:
Institute of Physics & Center of Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, People's Republic of China
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

The structural changes of carbon nanotubes induced by high pressure and high temperature were investigated by means of x-ray diffraction, Raman scattering, scanning electron microscopy, and transmission electron microscopy. It is shown that, with increasing pressure and temperature, the lattice constant d002 of tubes shortens, and then tubes collapse into tapelike ones; at the same time the C–C bonds at high curvature break, which lead the tapelike tubes to break into graphite sheets as diamond crystallization centers. Compared with graphite, the diamond particles from carbon nanotubes have many defects as the trace of tubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
2.Dresselhaus, M.S., Dresselhaus, G., and Saito, R., Carbon 33, 883 (1995).CrossRefGoogle Scholar
3.Mintmire, J.W. and White, C., Carbon 33, 893 (1995).CrossRefGoogle Scholar
4.Ebbesen, T.W. and Ajayan, P.M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
5.Endo, M. and Kroto, H.W., J. Phys. Chem. 96, 6941 (1992).CrossRefGoogle Scholar
6.Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Nature (London) 377, 135 (1995).CrossRefGoogle Scholar
7.Mintmire, J.W., Dunlap, B.I., and White, C.T., Phys. Rev. Lett. 68, 631 (1992).CrossRefGoogle Scholar
8.Hamada, N., Sawada, S., and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).CrossRefGoogle Scholar
9.Saito, R., Dresselhaus, G., and Dresselhaus, M.S., J. Appl. Phys. 73, 494 (1993).CrossRefGoogle Scholar
10.Wei, B.Q., Liang, J., Gao, Z.D., Zhang, J.H., Zhu, Y.Q., Li, Y.B., and Wu, D.H., J. Mater. Proc. Technol. 63, 573 (1997).CrossRefGoogle Scholar
11.Germanskii, A.M., Dyuzhev, G.A., Novikov, D.V., Oichenko, V.M., and Udalov, Y.P., Tech. Phys. Lett. 25, 174 (1999).CrossRefGoogle Scholar
12.Zhou, O., Fleming, R.M., Murphy, D.W., Chen, C.H., Haddon, R.C., Ramirez, A.P., and Glarum, S.H., Science 263, 1744 (1994).CrossRefGoogle Scholar
13.Zhang, M., He, D.W., Zhang, X.Y., Ji, L., Wei, B.Q., Wu, D.H., Zhang, F.X., Xu, Y.F., and Wang, W.K., Carbon 35, 1671 (1997).Google Scholar
14.Zhu, Y.Q., Sekine, T., Kobayashi, T., Takazawa, E., Terrones, M., and Terrones, H., Chem. Phys. Lett. 287, 689 (1998).CrossRefGoogle Scholar
15.Chang, B.H., Xei, S.S., Zhou, W.Y., Qian, L.X., Pan, Z.W., Mao, J.M., and Li, W.Z., J. Mater. Sci. Lett. 17, 1015 (1998).CrossRefGoogle Scholar
16.Bcasa, W.S., Ugarte, D., Chatelain, A., and Deheer, W.A., Phys. Rev. B50, 15473 (1994).CrossRefGoogle Scholar
17.Lu, K.L., Lago, L.M., Chen, Y.K., Green, M.L.H, Harris, P.J.F, and Tsang, S.C., Carbon 34, 814 (1996).CrossRefGoogle Scholar