Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T10:13:47.021Z Has data issue: false hasContentIssue false

Auto ignition synthesis and consolidation of Al2O3–ZrO2 nano/nano composite powders

Published online by Cambridge University Press:  31 January 2011

S. Bhaduri
Affiliation:
Department of Metallurgical Engineering, University of Idaho, Moscow, Idaho 83844-3024
S. B. Bhaduri
Affiliation:
Department of Metallurgical Engineering, University of Idaho, Moscow, Idaho 83844-3024
E. Zhou
Affiliation:
Department of Metallurgical Engineering, University of Idaho, Moscow, Idaho 83844-3024
Get access

Extract

An “Auto Ignition” technique was utilized in synthesizing Al2O3 –ZrO2 powders with nano/nano microstructure. The process used the corresponding nitrates as oxidizers and urea as the fuel. The as-synthesized powders were characterized by x-ray diffraction and transmission electron microscopy. It was observed that the microstructure consisted of crystallites of Al2O3 and ZrO2, both of which were nanocrystalline. As opposed to the other nanocomposite ceramics, this feature of the microstructure classifies the present powders as nano/nano type. This nanocrystallinity of the microstructure (crystallite size less than 100 nm) was maintained even after a soaking at 1200 °C for 2 h. Since the microstructure is stable at high temperatures, it was possible to densify the powders by hot isostatic pressing at 1200 °C. The product was 99% of the theoretical density and maintained nanocrystalline grain size. The average hardness and toughness values, as determined by an indentation technique, were 4.45 GPa and 8.38 MPa · m1/2, respectively. These values represent evidence of ductility in these composites since transformation toughening was ruled out in this case. The potential application of these results is expected to be in net shape deformation forming of ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gleiter, H., Nanostruct. Mater. 1, 1 (1992).CrossRefGoogle Scholar
2.Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
3.Karch, J. and Birringer, R., Ceram. Int. 16, 291 (1990).CrossRefGoogle Scholar
4.Mayo, M. J., Mater. Design 14, 323 (1993).CrossRefGoogle Scholar
5.Sherby, O. D. and Wadsworth, J., Prog. Mater. Sci. 33, 169 (1989).CrossRefGoogle Scholar
6.Niihara, K., J. Ceram. Soc. Jpn. 99, 510 (1991).CrossRefGoogle Scholar
7.Swaguchi, A., Toda, K., and Niihara, K., J. Ceram. Soc. Jpn. 99, 974 (1991).Google Scholar
8.Science of Ceramics, edited by Alper, A. M. and Stewart, G. H. (Academic Press, London, U.K., 1967), Vol. 3, p. 339.Google Scholar
9.Lange, F. F. and Hirlinger, M. M., J. Am. Ceram. Soc. 67, 164 (1984).CrossRefGoogle Scholar
10.Kibbel, B. and Heuer, A. H., J. Am. Ceram. Soc. 69, 231 (1986).CrossRefGoogle Scholar
11.French, J. D., Harmer, M. P., Chan, H. M., and Miller, G. A., J. Am. Ceram. Soc. 71, 2508 (1990).CrossRefGoogle Scholar
12.Wang, J. and Raj, R., J. Am. Ceram. Soc. 74, 1959 (1991).CrossRefGoogle Scholar
13.Alexander, K. B., Becher, P. F., Waters, S. B., and Bleier, A., J. Am. Ceram. Soc. 77, 939 (1994).CrossRefGoogle Scholar
14.Kagawa, M., Imamura, Y., Usui, S., and Syona, Y., J. Mater. Sci. Lett. 3, 96 (1984).CrossRefGoogle Scholar
15.Koh, S. C. H., Aik, K. K., and McPhearson, R., Advances in Ceramics, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Inc., Westerville, OH), Vol. 24B.Google Scholar
16.Vollath, D. and Szabo, D. V., Nanostruct. Mater. 4, 927 (1994).CrossRefGoogle Scholar
17.Pugar, E. A. and Morgan, P. E. D., J. Am. Ceram. Soc. 69, C120 (1986).CrossRefGoogle Scholar
18.Claussen, N., Lindemann, G., and Petzow, G., Ceram. Int. 9, 83 (1983).CrossRefGoogle Scholar
19.McKittrick, J., Kalonji, G., and Ando, T., J. Non-Cryst. Solids 94, 163 (1987).CrossRefGoogle Scholar
20.Jayram, V., Levi, C. G., Whitney, T., and Mehrabian, R., Mater. Sci. Eng. A124, 65 (1990).CrossRefGoogle Scholar
21.Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 77, 2069 (1994).CrossRefGoogle Scholar
22.Balmer, M. L., Lange, F. F., Jayram, V., and Levi, C. G., J. Am. Ceram. Soc. 78, 1489 (1995).CrossRefGoogle Scholar
23.Pechini, M. P., U.S. Patent 3,330,697 (1963).Google Scholar
24.Pederson, L. R., Chick, L. A., and Exarhos, G. J., U.S. Patent 5,114,702 (1992).Google Scholar
25.Kingsley, J. J., Suresh, K., and Patil, K. C., J. Mater. Sci. 25, 1305 (1990).CrossRefGoogle Scholar
26.Kingsley, J. J. and Patil, K. C., Mater. Lett. 6, 427 (1988).CrossRefGoogle Scholar
27.Chick, L. A., Maupin, G. D., and Pederson, L. R., Nanostruct. Mater. 4, 603 (1994).CrossRefGoogle Scholar
28.Huang, D., Venkatachari, K. R., and Stangle, G. C., J. Mater. Res. 10, 762 (1995).CrossRefGoogle Scholar
29.Venkatachari, K. R., Huang, D., Ostrander, S. P., Schulze, W. A., and Stangle, G. C., J. Mater. Res. 10, 748 (1995).CrossRefGoogle Scholar
30.Sutton, W. H., Bull. Am. Ceram. Soc. 68, 376 (1989).Google Scholar
31.Freim, J., McKittrick, J., Katz, J., and Sickafus, K., Nanostruct. Mater. 4, 371 (1994).CrossRefGoogle Scholar
32.McKittrick, J., Tunaboylu, B., and Katz, J., J. Mater. Sci. 29, 2119 (1994).CrossRefGoogle Scholar
33.Hahn, H. and Averback, R. S., Nanostruct. Mater. 1, 95 (1992).CrossRefGoogle Scholar
34.Owen, D. M. and Chokshi, A. H., Nanostruct. Mater. 2, 181 (1993).CrossRefGoogle Scholar
35.Averback, R. S., Hoefler, H. J., Hahn, H., and Logas, J. C., Nanostruct. Mater. 1, 173 (1992).CrossRefGoogle Scholar
36.Inamura, S., Miyamoto, M., Maida, Y., Takagura, M., Hirota, K., and Yamaguchi, O., J. Mater. Sci. 29, 4913 (1994).CrossRefGoogle Scholar
37.Gallas, M. R., Hockey, B., Pechenik, A., and Piermarini, G. J., J. Am. Ceram. Soc. 77, 2107 (1994).CrossRefGoogle Scholar
38.Pechenik, A. and Piermarini, G. J., and Danforth, S. C., J. Am. Ceram. Soc. 75, 3283 (1992).CrossRefGoogle Scholar
39.Matthews, M. D. and Pechenik, A., J. Am. Ceram. Soc. 74, 1547 (1991).CrossRefGoogle Scholar
40.Terwilliger, C. D. and Chiang, Y-M., Nanostruct. Mater. 77, 37 (1993).CrossRefGoogle Scholar
41.Mishra, R. S., Mukherjee, A. K., and Shoda, K., J. Mater. Res. 11, 1144 (1996).CrossRefGoogle Scholar
42.Hirai, H. and Kondo, K-I., J. Am. Ceram. Soc. 77, 487 (1994).CrossRefGoogle Scholar
43.Kondo, K. and Sawai, S., J. Am. Ceram. Soc. 71, C-185 (1988).Google Scholar
44.Terwilliger, C. D. and Chiang, Y-M., Acta Met et Mater. 43, 319 (1995).CrossRefGoogle Scholar
45.Terwilliger, C. D. and Chiang, Y-M., Nanostruct. Mater. 4, 651 (1994).CrossRefGoogle Scholar
46.Sakka, Y. and Aksay, I. A., Nanostruct. Mater. 4, 169 (1994).CrossRefGoogle Scholar
47.Condor, R. J., Ponton, C. B., and Marquis, P. M., Nanostruct. Mater. 2, 333 (1993).CrossRefGoogle Scholar
48.Jain, S. R., Adiga, K. C., and PaiVernekar, V. R., Combust. Flame 40, 71 (1981).CrossRefGoogle Scholar
49.Evans, A. G. and Charles, E. A., J. Am. Ceram. Soc. 59, 371 (1976).CrossRefGoogle Scholar
50.Niihara, K., Morena, R., and Hasselman, D. P. H., J. Mater. Sci. Lett. 1, 13 (1982).CrossRefGoogle Scholar
51.Kamata, K., Mochizuki, T., Matsumoto, S., Yamada, A., and Miyokawa, K., J. Am. Ceram. Soc. 69, C-193 (1985).Google Scholar
52.Chou, T. C. and Nieh, T. G., J. Am. Ceram. Soc. 74, 2270 (1991).CrossRefGoogle Scholar
53.Chou, T. C. and Nieh, T. G., Thin Solid Films 221, 89 (1992).CrossRefGoogle Scholar
54.Jantzen, C. M., Krepski, R. P., and Herman, H., Mater. Res. Bull. 15, 1313 (1980).CrossRefGoogle Scholar
55.Levi, C. G., Jayram, V., Valencia, J. J., and Mehrabian, R., J. Mater. Res. 3, 969 (1988).CrossRefGoogle Scholar
56.Bhaduri, S., Zhou, E., and Bhaduri, S. B., Nanostruct. Mater. 7, 487 (1996).CrossRefGoogle Scholar
57.Subbarao, E. C., in Advances in Ceramics, edited by Heuer, A. H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), p. 1.Google Scholar
58.Garvie, R. C. and Swain, M. V., J. Mater. Sci. 20, 1193 (1985).CrossRefGoogle Scholar
59.Lange, F. F., J. Mater. Sci. 17, 247 (1982).CrossRefGoogle Scholar
60.Green, D. J., J. Am. Ceram. Soc. 65, 610 (1982).CrossRefGoogle Scholar
61.Chaim, R., Nanostruct. Mater. 1, 479 (1992).CrossRefGoogle Scholar
62.Hoefler, H. J. and Averback, R. S., Scripta Metall. 24, 2401 (1990).CrossRefGoogle Scholar
63.Cottom, B. A. and Mayo, M. J., Scripta Metall. Mater. 34, 809 (1996).CrossRefGoogle Scholar