Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-04T00:14:06.614Z Has data issue: false hasContentIssue false

Atomistic modeling of nanoscale plasticity in high-entropy alloys

Published online by Cambridge University Press:  12 March 2019

Zachary H. Aitken
Affiliation:
Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
Viacheslav Sorkin
Affiliation:
Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
Yong-Wei Zhang*
Affiliation:
Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Lattice structures, defect structures, and deformation mechanisms of high-entropy alloys (HEAs) have been studied using atomistic simulations to explain their remarkable mechanical properties. These atomistic simulation techniques, such as first-principles calculations and molecular dynamics allow atomistic-level resolution of structure, defect configuration, and energetics. Following the structure–property paradigm, such understandings can be useful for guiding the design of high-performance HEAs. Although there have been a number of atomistic studies on HEAs, there is no comprehensive review on the state-of-the-art techniques and results of atomistic simulations of HEAs. This article is intended to fill the gap, providing an overview of the state-of-the-art atomistic simulations on HEAs. In particular, we discuss how atomistic simulations can elucidate the nanoscale mechanisms of plasticity underlying the outstanding properties of HEAs, and further present a list of interesting problems for forthcoming atomistic simulations of HEAs.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213218 (2004).CrossRefGoogle Scholar
Huang, P-K., Yeh, J-W., Shun, T-T., and Chen, S-K.: Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 7478 (2004).CrossRefGoogle Scholar
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 193 (2014).CrossRefGoogle Scholar
Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high-entropy alloys. JOM 64, 830838 (2012).CrossRefGoogle Scholar
Senkov, O.N., Miracle, D.B., Chaput, K.J., and Couzinie, J-P.: Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 33, 30923128 (2018).CrossRefGoogle Scholar
Diao, H.Y., Feng, R., Dahmen, K.A., and Liaw, P.K.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252266 (2017).CrossRefGoogle Scholar
Qiu, Y., Thomas, S., Gibson, M.A., Fraser, H.L., and Birbilis, N.: Corrosion of high entropy alloys. Npj Mater. Degrad. 1, 15 (2017).CrossRefGoogle Scholar
Wu, Z., Bei, H., Pharr, G.M., and George, E.P.: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428441 (2014).CrossRefGoogle Scholar
Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., and George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292303 (2017).CrossRefGoogle Scholar
Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124133 (2015).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).CrossRefGoogle ScholarPubMed
Laplanche, G., Kostka, A., Horst, O.M., Eggeler, G., and George, E.P.: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152163 (2016).CrossRefGoogle Scholar
Qin, B. and Bhadeshia, H.K.D.H.: Plastic strain due to twinning in austenitic TWIP steels. Mater. Sci. Technol. 24, 969973 (2008).CrossRefGoogle Scholar
Grässel, O. and Frommeyer, G.: Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater. Sci. Technol. 14, 12131217 (1998).CrossRefGoogle Scholar
Bouaziz, O. and Guelton, N.: Modelling of TWIP effect on work-hardening. Mater. Sci. Eng., A 319–321, 246249 (2001).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 57435755 (2013).CrossRefGoogle Scholar
Smith, T.M., Hooshmand, M.S., Esser, B.D., Otto, F., McComb, D.W., George, E.P., Ghazisaeidi, M., and Mills, M.J.: Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy. Acta Mater. 110, 352363 (2016).CrossRefGoogle Scholar
Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita, H., Tanaka, K., Inui, H., and George, E.P.: Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863 (2016).CrossRefGoogle ScholarPubMed
Kireeva, I., Chumlyakov, Y., Pobedennaya, Z., and Vyrodova, A.: Temperature dependence of mechanical properties in $\left[ {\bar{1}11} \right$-oriented single crystals of CoCrFeNiAl0.3 high entropy alloy. AIP Conf. Proc. 1909, 020083 (2017).CrossRefGoogle Scholar
Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Vyrodova, A.V., Kuksgauzen, I.V., Poklonov, V.V., and Kuksgauzen, D.A.: The orientation dependence of critical shear stresses in Al0.3CoCrFeNi high-entropy alloy single crystals. Tech. Phys. Lett. 43, 615618 (2017).CrossRefGoogle Scholar
Kireeva, I.V., Chumlyakov, Y.I., Pobedennaya, Z.V., Kuksgausen, I.V., and Karaman, I.: Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng., A 705, 176181 (2017).CrossRefGoogle Scholar
Varvenne, C., Leyson, G.P.M., Ghazisaeidi, M., and Curtin, W.A.: Solute strengthening in random alloys. Acta Mater. 124, 660683 (2017).CrossRefGoogle Scholar
Varvenne, C., Luque, A., and Curtin, W.A.: Theory of strengthening in fcc high entropy alloys. Acta Mater. 118, 164176 (2016).CrossRefGoogle Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 40624074 (2012).CrossRefGoogle Scholar
Tsai, C-W., Chen, Y-L., Tsai, M-H., Yeh, J-W., Shun, T-T., and Chen, S-K.: Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J. Alloys Compd. 486, 427435 (2009).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698706 (2011).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mater. Sci. Eng., A 565, 5162 (2013).CrossRefGoogle Scholar
Wang, W-R., Wang, W-L., Wang, S-C., Tsai, Y-C., Lai, C-H., and Yeh, J-W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 4451 (2012).CrossRefGoogle Scholar
Tang, Z., Yuan, T., Tsai, C-W., Yeh, J-W., Lundin, C.D., and Liaw, P.K.: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247258 (2015).CrossRefGoogle Scholar
Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 57235734 (2012).CrossRefGoogle Scholar
Ikeda, Y., Grabowski, B., and Körmann, F.: Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys. Mater. Charact. 147, 464511 (2019).CrossRefGoogle Scholar
Vitos, L., Abrikosov, I.A., and Johansson, B.: Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 87, 156401 (2001).CrossRefGoogle ScholarPubMed
Zunger, A., Wei, S., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353356 (1990).CrossRefGoogle ScholarPubMed
Jiang, C. and Uberuaga, B.P.: Supplemental material for efficient ab initio modeling of random multicomponent alloys. Phys. Rev. Lett. 116, 105501 (2016).CrossRefGoogle Scholar
Song, H., Tian, F., Hu, Q-M., Vitos, L., Wang, Y., Shen, J., and Chen, N.: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017).CrossRefGoogle Scholar
Tian, F., Varga, L.K., Chen, N., Delczeg, L., and Vitos, L.: Ab initio investigation of high-entropy alloys of 3d elements. Phys. Rev. B 87, 075144 (2013).CrossRefGoogle Scholar
Kohn, W. and Rostoker, N.: Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys. Rev. 94, 11111120 (1954).CrossRefGoogle Scholar
Tian, F., Wang, Y., Irving, D.L., and Vitos, L.: High-Entropy Alloy (Springer International Publishing, Cham, 2016); pp. 299332.CrossRefGoogle Scholar
Tian, F.: A review of solid-solution models of high-entropy alloys based on ab initio calculations. Front. Mater. 4, 110 (2017).CrossRefGoogle Scholar
Shin, D., Arróyave, R., Liu, Z.K., and Van De Walle, A.: Thermodynamic properties of binary hcp solution phases from special quasirandom structures. Phys. Rev. B: Condens. Matter Mater. Phys. 74, 024204 (2006).CrossRefGoogle Scholar
Jiang, C., Wolverton, C., Sofo, J., Chen, L.Q., and Liu, Z.K.: First-principles study of binary bcc alloys using special quasirandom structures. Phys. Rev. B 69, 110 (2004).CrossRefGoogle Scholar
Tian, F., Varga, L.K., Shen, J., and Vitos, L.: Calculating elastic constants in high-entropy alloys using the coherent potential approximation: Current issues and errors. Comput. Mater. Sci. 111, 350358 (2016).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).CrossRefGoogle ScholarPubMed
Niu, C., Zaddach, A.J., Koch, C.C., and Irving, D.L.: First principles exploration of near-equiatomic NiFeCrCo high entropy alloys. J. Alloys Compd. 672, 510520 (2016).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J.: Software VASP, vienna. Phys. Rev. B 54, 1116911186 (1996).CrossRefGoogle Scholar
Tian, L-Y., Hu, Q-M., Yang, R., Zhao, J., Johansson, B., and Vitos, L.: Elastic constants of random solid solutions by SQS and CPA approaches: The case of fcc Ti–Al. J. Phys.: Condens. Matter 27, 315702 (2015).Google ScholarPubMed
Huang, J-C.: Evaluation of tribological behavior of Al–Co–Cr–Fe–Ni high entropy alloy using molecular dynamics simulation. Scanning 34, 325331 (2012).CrossRefGoogle ScholarPubMed
Sharma, A., Singh, P., Johnson, D.D., Liaw, P.K., and Balasubramanian, G.: Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy. Sci. Rep. 6, 31028 (2016).CrossRefGoogle ScholarPubMed
Dong, W-P., Kim, H-K., Ko, W-S., Lee, B-M., and Lee, B-J.: Atomistic modeling of pure Co and Co–Al system. Calphad 38, 716 (2012).CrossRefGoogle Scholar
Kim, Y-K., Jung, W-S., and Lee, B-J.: Modified embedded-atom method interatomic potentials for the Ni–Co binary and the Ni–Al–Co ternary systems. Modell. Simul. Mater. Sci. Eng. 23, 055004 (2015).CrossRefGoogle Scholar
Kim, Y-M., Shin, Y-H., and Lee, B-J.: Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system. Acta Mater. 57, 474482 (2009).CrossRefGoogle Scholar
Lee, B-J., Baskes, M.I., Kim, H., and Koo Cho, Y.: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 (2001).CrossRefGoogle Scholar
Lee, B-J., Shim, J-H., and Baskes, M.I.: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 68, 144112 (2003).CrossRefGoogle Scholar
Choi, W-M., Kim, Y., Seol, D., and Lee, B-J.: Modified embedded-atom method interatomic potentials for the Co–Cr, Co–Fe, Co–Mn, Cr–Mn, and Mn–Ni binary systems. Comput. Mater. Sci. 130, 121129 (2017).CrossRefGoogle Scholar
Lee, B-J., Shim, J-H., and Park, H.M.: A semi-empirical atomic potential for the Fe–Cr binary system. Calphad 25, 527534 (2001).CrossRefGoogle Scholar
Wu, C., Lee, B-J., and Su, X.: Modified embedded-atom interatomic potential for Fe–Ni, Cr–Ni, and Fe–Cr–Ni systems. Calphad 57, 98106 (2017).CrossRefGoogle Scholar
Choi, W-M., Jo, Y.H., Sohn, S.S., Lee, S., and Lee, B-J.: Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study. npj Comput. Mater. 4, 1 (2018).CrossRefGoogle Scholar
Bonny, G., Terentyev, D., Pasianot, R.C., Poncé, S., and Bakaev, A.: Interatomic potential to study plasticity in stainless steels: The FeNiCr model alloy. Modell. Simul. Mater. Sci. Eng. 19, 085008 (2011).CrossRefGoogle Scholar
Bonny, G., Castin, N., and Terentyev, D.: Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy. Modell. Simul. Mater. Sci. Eng. 21, 085004 (2013).CrossRefGoogle Scholar
Zhou, X.W., Johnson, R.A., and Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).CrossRefGoogle Scholar
Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L.M., Djurabekova, F., Weber, W.J., and Zhang, Y.: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle ScholarPubMed
Lin, Z., Johnson, R.A., and Zhigilei, L.V.: Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Phys. Rev. B 77, 214108 (2008).CrossRefGoogle Scholar
Rao, S.I., Woodward, C., Parthasarathy, T.A., and Senkov, O.: Atomistic simulations of dislocation behavior in a model FCC multicomponent concentrated solid solution alloy. Acta Mater. 134, 188194 (2017).CrossRefGoogle Scholar
Rao, S.I., Varvenne, C., Woodward, C., Parthasarathy, T.A., Miracle, D., Senkov, O.N., and Curtin, W.A.: Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy. Acta Mater. 125, 311320 (2017).CrossRefGoogle Scholar
Xie, L., Brault, P., Thomann, A-L., Yang, X., Zhang, Y., and Shang, G.: Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics 68, 7886 (2016).CrossRefGoogle Scholar
Xie, L., Brault, P., Thomann, A-L., and Bauchire, J-M.: AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Appl. Surf. Sci. 285, 810816 (2013).CrossRefGoogle Scholar
Sosso, G.C., Deringer, V.L., Elliott, S.R., and Csányi, G.: Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials. Mol. Simul. 44, 866880 (2018).CrossRefGoogle Scholar
Behler, J.: Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).CrossRefGoogle ScholarPubMed
Handley, C.M. and Behler, J.: Next generation interatomic potentials for condensed systems. Eur. Phys. J. B 87, 152 (2014).CrossRefGoogle Scholar
Behler, J.: Constructing high-dimensional neural network potentials: A tutorial review. Int. J. Quantum Chem. 115, 10321050 (2015).CrossRefGoogle Scholar
Behler, J.: Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys.: Condens. Matter 26, 183001 (2014).Google ScholarPubMed
Behler, J.: Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930 (2011).CrossRefGoogle ScholarPubMed
Handley, C.M. and Popelier, P.L.A.: Potential energy surfaces fitted by artificial neural networks. J. Phys. Chem. A 114, 33713383 (2010).CrossRefGoogle ScholarPubMed
Behler, J. and Parrinello, M.: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).CrossRefGoogle ScholarPubMed
Artrith, N. and Urban, A.: An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2. Comput. Mater. Sci. 114, 135150 (2016).CrossRefGoogle Scholar
Behler, J., Martoňák, R., Donadio, D., and Parrinello, M.: Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Phys. Rev. Lett. 100, 185501 (2008).CrossRefGoogle ScholarPubMed
Behler, J., Martoňák, R., Donadio, D., and Parrinello, M.: Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations. Phys. Status Solidi 245, 26182629 (2008).CrossRefGoogle Scholar
Artrith, N. and Behler, J.: High-dimensional neural network potentials for metal surfaces: A prototype study for copper. Phys. Rev. B 85, 045439 (2012).CrossRefGoogle Scholar
Khaliullin, R.Z., Eshet, H., Kühne, T.D., Behler, J., and Parrinello, M.: Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface. Phys. Rev. B 81, 100103 (2010).CrossRefGoogle Scholar
Khaliullin, R.Z., Eshet, H., Kühne, T.D., Behler, J., and Parrinello, M.: Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693697 (2011).CrossRefGoogle ScholarPubMed
Eshet, H., Khaliullin, R.Z., Kühne, T.D., Behler, J., and Parrinello, M.: Microscopic origins of the anomalous melting behavior of sodium under high pressure. Phys. Rev. Lett. 108, 115701 (2012).CrossRefGoogle ScholarPubMed
Eshet, H., Khaliullin, R.Z., Kühne, T.D., Behler, J., and Parrinello, M.: Ab initio quality neural-network potential for sodium. Phys. Rev. B 81, 184107 (2010).CrossRefGoogle Scholar
Artrith, N., Morawietz, T., and Behler, J.: High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide. Phys. Rev. B 83, 153101 (2011).CrossRefGoogle Scholar
Artrith, N., Hiller, B., and Behler, J.: Neural network potentials for metals and oxides—First applications to copper clusters at zinc oxide. Phys. Status Solidi 250, 11911203 (2013).CrossRefGoogle Scholar
Sosso, G.C., Miceli, G., Caravati, S., Behler, J., and Bernasconi, M.: Neural network interatomic potential for the phase change material GeTe. Phys. Rev. B 85, 174103 (2012).CrossRefGoogle Scholar
Sosso, G.C., Donadio, D., Caravati, S., Behler, J., and Bernasconi, M.: Thermal transport in phase-change materials from atomistic simulations. Phys. Rev. B 86, 104301 (2012).CrossRefGoogle Scholar
Sosso, G.C., Behler, J., and Bernasconi, M.: Breakdown of Stokes–Einstein relation in the supercooled liquid state of phase change materials. Phys. Status Solidi 249, 18801885 (2012).CrossRefGoogle Scholar
Sosso, G.C., Miceli, G., Caravati, S., Giberti, F., Behler, J., and Bernasconi, M.: Fast crystallization of the phase change compound GeTe by large-scale molecular dynamics simulations. J. Phys. Chem. Lett. 4, 42414246 (2013).CrossRefGoogle ScholarPubMed
Bartók, A.P., Payne, M.C., Kondor, R., and Csányi, G.: Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).CrossRefGoogle ScholarPubMed
Bartók, A.P. and Csányi, G.: Gaussian approximation potentials: A brief tutorial introduction. Int. J. Quantum Chem. 115, 10511057 (2015).CrossRefGoogle Scholar
Thompson, A.P., Swiler, L.P., Trott, C.R., Foiles, S.M., and Tucker, G.J.: Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316330 (2015).CrossRefGoogle Scholar
Szlachta, W.J., Bartók, A.P., and Csányi, G.: Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys. Rev. B 90, 104108 (2014).CrossRefGoogle Scholar
Deringer, V.L. and Csányi, G.: Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B 95, 094203 (2017).CrossRefGoogle Scholar
Maillet, J-B., Denoual, C., and Csányi, G.: Machine-learning based potential for iron: Plasticity and phase transition. AIP Conf. Proc. 1979, 050011 (2018).CrossRefGoogle Scholar
Thompson, A.P., Schultz, P.A., Crozier, P., Moore, S.G., Swiler, L.P., Stephens, J.A., Trott, C.R., Foiles, S.M., and Tucker, G.J.: Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report (Sandia National Laboratories, Albuquerque, NM, and Livermore, CA, 2014).CrossRefGoogle Scholar
Li, X-G., Hu, C., Chen, C., Deng, Z., Luo, J., and Ong, S.P.: Quantum-accurate spectral neighbor analysis potential models for Ni–Mo binary alloys and fcc metals. Phys. Rev. B 98, 094104 (2018).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119 (1995).CrossRefGoogle Scholar
Trott, C.R., Hammond, S.D., and Thompson, A.P.: SNAP: Strong scaling high fidelity molecular dynamics simulations on leadership-class computing platforms. In ISC 2014 Supercomput, Kunkel, J.M., Ludwig, T., and Meuer, H.W., eds.; Lecture Notes in Computer Science, Vol. 8488 (Springer, Cham, 2014); pp. 1934.Google Scholar
Bartók, A.P., Kondor, R., and Csányi, G.: On representing chemical environments. Phys. Rev. B 87, 184115 (2013).CrossRefGoogle Scholar
Huan, T.D., Batra, R., Chapman, J., Krishnan, S., Chen, L., and Ramprasad, R.: A universal strategy for the creation of machine learning-based atomistic force fields. npj Comput. Mater. 3, 37 (2017).CrossRefGoogle Scholar
Li, Z., Kermode, J.R., and De Vita, A.: Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).CrossRefGoogle ScholarPubMed
Botu, V. and Ramprasad, R.: Learning scheme to predict atomic forces and accelerate materials simulations. Phys. Rev. B 92, 094306 (2015).CrossRefGoogle Scholar
Botu, V. and Ramprasad, R.: Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quantum Chem. 115, 10741083 (2015).CrossRefGoogle Scholar
Botu, V., Batra, R., Chapman, J., and Ramprasad, R.: Machine learning force fields: Construction, validation, and outlook. J. Phys. Chem. C 121, 511522 (2017).CrossRefGoogle Scholar
Suzuki, T., Tamura, R., and Miyazaki, T.: Machine learning for atomic forces in a crystalline solid: Transferability to various temperatures. Int. J. Quantum Chem. 117, 3339 (2017).CrossRefGoogle Scholar
Botu, V., Chapman, J., and Ramprasad, R.: A study of adatom ripening on an Al(111) surface with machine learning force fields. Comput. Mater. Sci. 129, 332335 (2017).CrossRefGoogle Scholar
Glielmo, A., Sollich, P., and De Vita, A.: Accurate interatomic force fields via machine learning with covariant kernels. Phys. Rev. B 95, 214302 (2017).CrossRefGoogle Scholar
Shapeev, A.V.: Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 11531173 (2016).CrossRefGoogle Scholar
Podryabinkin, E.V. and Shapeev, A.V.: Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171180 (2017).CrossRefGoogle Scholar
Seko, A., Takahashi, A., and Tanaka, I.: Sparse representation for a potential energy surface. Phys. Rev. B 90, 024101 (2014).CrossRefGoogle Scholar
Wang, Z., Liu, C.T., and Dou, P.: Thermodynamics of vacancies and clusters in high-entropy alloys. Phys. Rev. Mater. 1, 043601 (2017).CrossRefGoogle Scholar
Zhao, S., Stocks, M., and Zhang, Y.: Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. Phys. Chem. Chem. Phys. 18, 2404324056 (2016).CrossRefGoogle ScholarPubMed
Middleburgh, S.C., King, D.M., Lumpkin, G.R., Cortie, M., and Edwards, L.: Segregation and migration of species in the CrCoFeNi high entropy alloy. J. Alloys Compd. 599, 179182 (2014).CrossRefGoogle Scholar
Zhao, S., Egami, T., Stocks, G.M., and Zhang, Y.: Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys. Phys. Rev. Mater. 2, 013602 (2018).CrossRefGoogle Scholar
Chen, W., Ding, X., Feng, Y., Liu, X., Liu, K., Lu, Z.P., Li, D., Li, Y., Liu, C.T., and Chen, X.Q.: Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance. J. Mater. Sci. Technol. 34, 355364 (2018).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448511 (2017).CrossRefGoogle Scholar
Tong, C-J., Chen, Y-L., Chen, S-K., Yeh, J-W., Shun, T-T., Tsau, C-H., Lin, S-J., and Chang, S-Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881893 (2005).CrossRefGoogle Scholar
Tsai, K.Y., Tsai, M.H., and Yeh, J.W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 48874897 (2013).CrossRefGoogle Scholar
Vaidya, M., Trubel, S., Murty, B.S., Wilde, G., and Divinski, S.V.: Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 688, 9941001 (2016).CrossRefGoogle Scholar
Vaidya, M., Pradeep, K.G., Murty, B.S., Wilde, G., and Divinski, S.V.: Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 12293 (2017).CrossRefGoogle ScholarPubMed
Jin, K., Zhang, C., Zhang, F., and Bei, H.: Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys. Mater. Res. Lett. 6, 293299 (2018).CrossRefGoogle Scholar
Jin, K. and Bei, H.: Single-phase concentrated solid-solution alloys: Bridging intrinsic transport properties and irradiation resistance. Front. Mater. 5, 111 (2018).CrossRefGoogle Scholar
Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., Shi, S., He, M.R., Robertson, I.M., Weber, W.J., and Wang, L.: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 13564 (2016).CrossRefGoogle ScholarPubMed
Li, Z., Tasan, C.C., Springer, H., Gault, B., and Raabe, D.: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017).CrossRefGoogle ScholarPubMed
Toda-Caraballo, I. and Rivera-Díaz-del-Castillo, P.E.J.: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 1423 (2015).CrossRefGoogle Scholar
Kireeva, I., Chumlyakov, Y., Pobedennaya, Z., Kuksgauzen, D., Karaman, I., and Sehitoglu, H.: Mechanisms of plastic deformation in $\left[ {\bar{1}11} \right \right]$-oriented single crystals of FeNiMnCrCo high entropy alloy. AIP Conf. Proc. 1783, 15 (2016).Google Scholar
Wang, Z., Li, J., Fang, Q.H., Liu, B., and Zhang, L.: Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Appl. Surf. Sci. 416, 470481 (2017).CrossRefGoogle Scholar
Couzinié, J-P., Lilensten, L., Champion, Y., Dirras, G., Perrière, L., and Guillot, I.: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater. Sci. Eng., A 645, 255263 (2015).CrossRefGoogle Scholar
Lilensten, L., Couzinié, J-P., Perrière, L., Hocini, A., Keller, C., Dirras, G., and Guillot, I.: Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 142, 131141 (2018).CrossRefGoogle Scholar
Feuerbacher, M., Heidelmann, M., and Thomas, C.: Plastic deformation properties of Zr–Nb–Ti–Ta–Hf high-entropy alloys. Philos. Mag. 95, 12211232 (2015).CrossRefGoogle Scholar
Varvenne, C., Luque, A., Nöhring, W.G., and Curtin, W.A.: Average-atom interatomic potential for random alloys. Phys. Rev. B 93, 104201 (2016).CrossRefGoogle Scholar
Nöhring, W.G. and Curtin, W.A.: Dislocation cross-slip in fcc solid solution alloys. Acta Mater. 128, 135148 (2017).CrossRefGoogle Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654724 (2011).CrossRefGoogle Scholar
Giwa, A.M., Liaw, P.K., Dahmen, K.A., and Greer, J.R.: Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi high entropy alloy. Extrem. Mech. Lett. 8, 220228 (2016).CrossRefGoogle Scholar
Li, Z., Körmann, F., Grabowski, B., Neugebauer, J., and Raabe, D.: Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 136, 262270 (2017).CrossRefGoogle Scholar
Zhao, S., Stocks, G.M., and Zhang, Y.: Stacking fault energies of face-centered cubic concentrated solid solution alloys. Acta Mater. 134, 334345 (2017).CrossRefGoogle Scholar
Huang, S., Li, W., Lu, S., Tian, F., Shen, J., Holmström, E., and Vitos, L.: Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 4447 (2015).CrossRefGoogle Scholar
Beyramali Kivy, M. and Asle Zaeem, M.: Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys. Scr. Mater. 139, 8386 (2017).CrossRefGoogle Scholar
Abbasi, A., Dick, A., Hickel, T., and Neugebauer, J.: First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Mater. 59, 30413048 (2011).CrossRefGoogle Scholar
Medvedeva, N.I., Park, M.S., Van Aken, D.C., and Medvedeva, J.E.: First-principles study of Mn, Al, and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloys Compd. 582, 475482 (2014).CrossRefGoogle Scholar
Zhang, Y.H., Zhuang, Y., Hu, A., Kai, J.J., and Liu, C.T.: The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scr. Mater. 130, 9699 (2017).CrossRefGoogle Scholar
Bhattacharjee, P.P., Sathiaraj, G.D., Zaid, M., Gatti, J.R., Lee, C., Tsai, C.W., and Yeh, J.W.: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544552 (2014).CrossRefGoogle Scholar
Patriarca, L., Ojha, A., Sehitoglu, H., and Chumlyakov, Y.I.: Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scr. Mater. 112, 5457 (2016).CrossRefGoogle Scholar
Whelan, M.J., Hirsch, P.B., Horne, R.W., and Bollmann, W.: Dislocations and stacking faults in Stainless steel. Proc. R. Soc. A 240, 524538 (1957).Google Scholar
Liu, S. and Wei, Y.: The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Extrem. Mech. Lett. 11, 8488 (2017).CrossRefGoogle Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 60436048 (2011).CrossRefGoogle Scholar
Han, Z.D., Chen, N., Zhao, S.F., Fan, L.W., Yang, G.N., Shao, Y., and Yao, K.F.: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153157 (2017).CrossRefGoogle Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 40624074 (2012).CrossRefGoogle Scholar
Wu, W., Song, M., Ni, S., Wang, J., Liu, Y., Liu, B., and Liao, X.: Dual mechanisms of grain refinement in a FeCoCrNi highentropy alloy processed by highpressure torsion. Sci. Rep. 7, 46720 (2017).CrossRefGoogle Scholar
Joo, S.H., Kato, H., Jang, M.J., Moon, J., Tsai, C.W., Yeh, J.W., and Kim, H.S.: Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng., A 689, 122133 (2017).CrossRefGoogle Scholar
Pande, C.S. and Cooper, K.P.: Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54, 689706 (2009).CrossRefGoogle Scholar
Zhou, N., Hu, T., Huang, J., and Luo, J.: Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions. Scr. Mater. 124, 160163 (2016).CrossRefGoogle Scholar
Zhou, N., Hu, T., and Luo, J.: Grain boundary complexions in multicomponent alloys: Challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 20, 268277 (2016).CrossRefGoogle Scholar
Liu, W.H., Wu, Y., He, J.Y., Nieh, T.G., and Lu, Z.P.: Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526529 (2013).CrossRefGoogle Scholar
Novikov, V.Y.: On Zener pinning in 3-D polycrystals. Scr. Mater. 42, 439443 (2000).CrossRefGoogle Scholar
Paul, T.R., Belova, I.V., and Murch, G.E.: Analysis of diffusion in high entropy alloys. Mater. Chem. Phys. 210, 301308 (2018).CrossRefGoogle Scholar
Skouras, E.D., Burganos, V.N., and Payatakes, A.C.: Improved atomistic simulation of diffusion and sorption in metal oxides. J. Chem. Phys. 114, 545552 (2001).CrossRefGoogle Scholar
Li, Z., Tasan, C.C., Pradeep, K.G., and Raabe, D.: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323335 (2017).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227230 (2016).CrossRefGoogle ScholarPubMed
Basu, I., Ocelík, V., and De Hosson, J.T.M.: BCC–FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys. Acta Mater. 157, 8395 (2018).CrossRefGoogle Scholar
He, Q. and Yang, Y.: On lattice distortion in high entropy alloys. Front. Mater. 5, 18 (2018).CrossRefGoogle Scholar
Wang, Y., Yan, M., Zhu, Q., Wang, W.Y., Wu, Y., Hui, X., Otis, R., Shang, S-L., Liu, Z-K., and Chen, L-Q.: Computation of entropies and phase equilibria in refractory V–Nb–Mo–Ta–W high-entropy alloys. Acta Mater. 143, 88101 (2018).CrossRefGoogle Scholar