Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-30T22:25:55.087Z Has data issue: false hasContentIssue false

Atomistic modeling of Co–Al compounds

Published online by Cambridge University Press:  18 September 2013

Chuan-Hui Zhang*
Affiliation:
Department of Physics, University of Science and Technology Beijing, 100083 Beijing, China
Shuo Huang
Affiliation:
Department of Physics, University of Science and Technology Beijing, 100083 Beijing, China
Jiang Shen
Affiliation:
Department of Physics, University of Science and Technology Beijing, 100083 Beijing, China
Nan-Xian Chen
Affiliation:
Department of Physics, University of Science and Technology Beijing, 100083 Beijing, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structural properties, the formation enthalpies, and the mechanical properties of Co–Al compounds (CoAl, CoAl3, Co3Al, Co2Al5, Co2Al9, and Co4Al13) are studied by using Chen's lattice inversion embedded-atom method. The potential is transferable and therefore does well for studying different Co–Al compounds. The calculated lattice parameters and cohesive energies are consistent with the experimental and theoretical results. The formation enthalpies of all the Co–Al compounds are negative; therefore, the chemical bonding between Co and Al atoms increases the stability of compounds. According to elastic constant restrictions, all the six Co–Al compounds are mechanically stable. CoAl alloy with the larger moduli and lower Poisson's ratio is the hard or brittle phase. Moreover, CoAl3, Co3Al, Co2Al5, and Co2Al9 alloys are considered to be ductile materials, which have lower ratio of shear modulus to bulk modulus.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Steurer, W.: Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr. 219, 391 (2004).CrossRefGoogle Scholar
Fleischer, F., Weber, T., Jung, D.Y., and Steurer, W.: σ-Al13Co4, a new quasicrystal approximant. J. Alloys Compd. 500, 153 (2010).CrossRefGoogle Scholar
Heggen, M., Deng, D.W., and Feuerbacher, M.: Plastic deformation properties of the orthorhombic complex metallic alloy phase Al13Co4. Intermetallics 15, 1425 (2007).CrossRefGoogle Scholar
Mihalkovič, M. and Widom, M.: First-principles calculations of cohesive energies in the Al-Co binary alloy system. Phys. Rev. B 75, 014207 (2007).CrossRefGoogle Scholar
Mizuno, M., Araki, H., and Shirai, Y.: Energetics and structural relaxation of constitutional defects in CoAl and CoTi from first principles. Phys. Rev. B 68, 144103 (2003).CrossRefGoogle Scholar
Bergman, C., Girardeaux, C., Perrin-Pellegrino, C., Gas, P., Chatain, D., Dubois, J.M., and Rivier, N.: Wetting of decagonal Al13Co4 and cubic AlCo thin films by liquid Pb. Philos. Mag. 86, 849 (2006).CrossRefGoogle Scholar
Heggen, M., Houben, L., and Feuerbacher, M.: Metadislocations in the structurally complex orthorhombic alloy Al13Co4. Philos. Mag. 88, 2333 (2008).CrossRefGoogle Scholar
Dolinšek, J., Komelj, M., Jeglič, P., Vrtnik, S., Stanić, D., Popčević, P., Ivkov, J., Smontara, A., Jagličić, Z., and Gille, P.: Anisotropic magnetic and transport properties of orthorhombic Al13Co4. Phys. Rev. B 79, 184201 (2009).CrossRefGoogle Scholar
Luo, H-Z., Zhu, Z-Y., Ma, L., Xu, S-F., Wu, G-H., Liu, H-Y., Qu, J-P., Li, Y-X., Zhu, X-X., Jiang, C-B., and Xu, H-B.: Effect of Cr on the electronic structure of Co3Al intermetallic compound: A first-principles study. J. Magn. Magn. Mater. 320, 1345 (2008).CrossRefGoogle Scholar
Portnoi, V.K., Tretyakov, K.V., and Fadeeva, V.I.: Structural transformations during the mechanochemical synthesis and heating of Co-Al Alloys. Inorg. Mater. 40, 937 (2004).CrossRefGoogle Scholar
Golubkova, G.V., Lomovsky, O.I., Kwon, Y.S., Vlasov, A.A., and Chuvilin, A.L.: Formation of nanocrystalline structures in a Co-Al system by mechanical alloying and leaching. J. Alloys Compd. 351, 101 (2003).CrossRefGoogle Scholar
Ormeci, A. and Grin, Y.: Chemical bonding in Al5Co2: The electron localizability-electron density approach. Isr. J. Chem. 51, 1349 (2011).CrossRefGoogle Scholar
Portnoi, V.K., Tretyakov, K.V., Fadeeva, V.I., and Latuch, J.: Effects of liquid quenching and subsequent heating on the structure of Co-Al Alloys. Inorg. Mater. 41, 350 (2005).CrossRefGoogle Scholar
Vailhé, C. and Farkas, D.: Shear faults and dislocation core structures in B2 CoAl. J. Mater. Res. 12, 2559 (1997).CrossRefGoogle Scholar
Zhang, B-W., Hu, W-Y., and Su, X-L.: Theory of Embedded Atom Method and its Application to Materials Science-atomic Scale Materials Design Theory (Hunan University Press, Hunan, China, 2003), p. 397.Google Scholar
Dong, W-P., Kim, H-K., Ko, W-S., Lee, B-M., and Lee, B-J.: Atomistic modeling of pure Co and Co-Al system. Calphad 38, 7 (2012).CrossRefGoogle Scholar
Zhang, C-H., Han, J-J., Huang, S., and Shen, J.: Chen's lattice inversion embedded-atom method for FCC metal. Adv. Mater. Res. 320, 415 (2011).CrossRefGoogle Scholar
Zhang, C-H., Huang, S., Shen, J., and Chen, N-X.: Chen's lattice inversion embedded-atom method for Ni-Al alloy. Chin. Phys. B 21, 113401 (2012).CrossRefGoogle Scholar
Daw, M.S. and Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
Morse, P.M.: Diatomic molecules according to the wave mechanics II. Vibrational levels. Phys. Rev. 34, 57 (1929).CrossRefGoogle Scholar
Banerjea, A. and Smith, J.R.: Origins of the universal binding-energy relation. Phys. Rev: B, Condens. Matter 37, 6632 (1988).CrossRefGoogle ScholarPubMed
Norskov, J.K. and Lang, N.D.: Effective-medium theory of chemical binding: Application to chemisorptions. Phys. Rev. B 21, 2131 (1980).CrossRefGoogle Scholar
Rose, J.H., Smith, J.R., Guinea, F., and Ferrante, J.: Universal features of the equation of state of metals. Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
Chen, N-X.: Modified mobius inverse formula and its applications in physics. Phys. Rev. Lett. 64, 1193 (1990).CrossRefGoogle ScholarPubMed
Chen, N-X., Chen, Z-D., and Wei, Y-C.: Multidimensional inverse lattice problem and a uniformly sampled arithmetic fourier transform. Phys. Rev. E 55, R5 (1998).Google Scholar
Huang, S., Zhang, C-H., Sun, J., Li, Y-P., Zhang, Z-F., and Shen, J.: Formation and migration mechanism of the vacancy in three typical structures metal. Appl. Phys. 2, 50 (2012).CrossRefGoogle Scholar
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys: Condens. Matter 14, 2717 (2002).Google Scholar
Villars, P. and Calvert, L.: Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM International, Materials Park, OH, 1997), p. 135.Google Scholar
Cooper, M.J.: An investigation of the ordering of the phases CoAl and NiAl. Philos. Mag. 8, 805 (1963).CrossRefGoogle Scholar
Hultgren, R., Desai, P., Hawkins, D., Gleiser, N., and Kelly, K.: Selected Values of Thermodynamic Properties of Binary Alloys (ASM International, Materials Park, OH, 1973), p. 214.Google Scholar
ЛЯКИШeB, H.П.: Handbook of Binary Alloy Phase Diagrams (Beijing Chemical Industry Press, Beijing, China, 2009), p. 52.Google Scholar
Anderson, O.L.: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).CrossRefGoogle Scholar
Gale, J.D. and Rohl, A.L.: The general utility lattice program. Mol. Simul. 29, 291 (2003).CrossRefGoogle Scholar
Mehl, M.J., Osburn, J.E., Papaconstantopoulos, D.A., and Klein, B.M.: Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B 41, 10311 (1990).CrossRefGoogle ScholarPubMed
Grosso, M.F., Mosca, H.O., and Bozzolo, G.: Thermal and physical properties of B2 Al-Ir-X (X = Ni, Ru, Pd, Co, Fe) alloys. Intermetallics 18, 945 (2010).CrossRefGoogle Scholar
Ohtani, H., Yamano, M., and Hasebe, M.: Thermodynamic analysis of the Co-Al-C and Ni-Al-C systems by incorporating ab initio energetic calculations into the CALPHAD approach. Calphad 28, 177 (2004).CrossRefGoogle Scholar
Widom, M. and Moriarty, J.A.: First-principles interatomic potentials for transition-metal aluminides. II. Application to Al-Co and Al-Ni phase diagrams. Phys. Rev. B 58, 8967 (1998).CrossRefGoogle Scholar
Broderick, S.R., Aourag, H., and Rajan, K.: Data mining density of states spectra for crystal structure classification: An inverse problem approach. Stat. Anal. Data Min. 1, 353 (2009).CrossRefGoogle Scholar
Trambly de Laissardiere, G., Nguyen Manh, D., Magaud, L., Julien, J.P., Cyrot-Lackmann, F., and Mayou, D.: Electronic structure and hybridization effects in hume-rothery alloys containing transition elements. Phys. Rev. B 52, 7920 (1995).CrossRefGoogle Scholar
Newkirk, J.B., Balck, P.J., and Damjanovic, A.: The refinement of the Co2Al5 structures. Acta Crystallogr. 14, 532 (1961).CrossRefGoogle Scholar
Moriarty, J.A. and Widom, M.: First-principles interatomic potentials for transition-metal aluminides: Theory and trends across the 3d series. Phys. Rev. B 56, 7905 (1997).CrossRefGoogle Scholar
Ma, X-L. and Kuo, K-H.: Decagonal quasicrystal and related crystalline phases in slowly solidified Al-Co alloys. Metall. Mater. Trans. A 23, 1121 (1992).CrossRefGoogle Scholar
Hudd, R.C. and Taylor, W.H.: The structure of Co4Al13. Acta Crystallogr. 15, 441 (1962).CrossRefGoogle Scholar
Grin, J., Burkhardt, U., Ellner, M., and Peters, K.: Crystal structure of orthorhombic Co4Al13. J. Alloys Compd. 206, 243 (1994).CrossRefGoogle Scholar
Nye, J.F.: Physical Properties of Crystals (Oxford University Press, Oxford, England, 1985), p. 85.Google Scholar
Beckstein, O., Klepeis, J.E., Hart, G.L.W., and Pankratov, O.: First-principles elastic constants and electronic structure of α-Pt2Si and PtSi. Phys. Rev. B 63, 134112 (2001).CrossRefGoogle Scholar
Tsuchiya, T., Yamanaka, T., and Matsui, M.: Molecular dynamics study of pressure-induced transformation of quartz-type GeO2. Phys. Chem. Miner. 27, 149 (2000).CrossRefGoogle Scholar
Fleischer, R.L.: Substitutional solutes in AlRu-I. Effects of solute on moduli, lattice parameters and vacancy production. Acta Metall. Mater. 41, 863 (1993).CrossRefGoogle Scholar
Haines, J., Leger, J.M., and Bocquillon, G.: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1 (2001).CrossRefGoogle Scholar
Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
Gschneidner, K., Russell, A., Pecharsky, A., Morris, J., Zhang, Z., Lograsso, T., Hsu, D., Lo, C.H., Ye, Y., Slager, A., and Kesse, D.: A family of ductile intermetallic compounds. Nat. Mater. 2, 587 (2003).CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhang et al. supplementary material

Supplementary material

Download Zhang et al. supplementary material(File)
File 13.6 KB