Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T14:47:27.708Z Has data issue: false hasContentIssue false

Atomic-scale structural and compositional analyses of Ruddlesden-Popper planar faults in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics

Published online by Cambridge University Press:  31 January 2011

Sašo Šturm*
Affiliation:
Department for Nanostructured Materials, Jozˇef Stefan Institute, 1000 Ljubljana, Slovenia
Makoto Shiojiri
Affiliation:
Kyoto Institute of Technology, Kyoto 618-0091, Japan
Miran Čeh
Affiliation:
Department for Nanostructured Materials, Jozˇef Stefan Institute, 1000 Ljubljana, Slovenia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cocco, A. and Massazza, F.: Microscopic study of the system SrOTiO2. Ann. Chim. (Rome) 53, 883 (1963).Google Scholar
2McCarthy, G.J., White, W.B., and Roy, R.: Phase equilibria in the 1375 °C isotherm of the system Sr-Ti-O. J. Am. Ceram. Soc. 52, 463 (1969).CrossRefGoogle Scholar
3Witek, S., Smyth, D.M., and Pickup, H.: Variability of the Sr/Ti ratio in SrTiO3. J. Am. Ceram. Soc. 67, 372 (1984).CrossRefGoogle Scholar
4Ruddlesden, S.N. and Popper, P.: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54 (1958).CrossRefGoogle Scholar
5Udayakumar, K.R. and Cormack, A.N.: Structural aspects of phase equilibria in the strontium-titanium-oxygen system. J. Am. Ceram. Soc. 71, C469 (1988).CrossRefGoogle Scholar
6Hawkins, K. and White, T.J.: Defect structure and chemistry of (CaxSr1-x)n+1TinO3n+1 layer perovskites. Philos. Trans. R. Soc. London, Ser. A 336, 541 (1991).Google Scholar
7McCoy, M.A., Grimes, R.W., and Lee, W.E.: Phase stability and interfacial structures in the SrO-SrTiO3 system. Philos. Mag. A 75, 833 (1997).CrossRefGoogle Scholar
8Noguera, C.: Theoretical investigation of the Ruddlesden-Popper compounds Srn+1TinO3n+1(n=1-3). Philos. Mag. Lett. 80, 173 (2000).CrossRefGoogle Scholar
9Bacq, O. Le, Salinas, E., Pisch, A., Bernard, C., and Pasturel, A.: First-principles structural stability in the strontium-titaniumoxygen system. Philos. Mag. 86, 2283 (2006).CrossRefGoogle Scholar
10Tilley, R.J.: An electron microscope study of perovskite-related oxides in the Sr-Ti-O system. J. Solid State Chem. 21, 293 (1977).CrossRefGoogle Scholar
11Fujimoto, M., Tanaka, J., and Shirasaki, S.: Planar faults and grain boundary precipitation in non-stoichiometric (Sr,Ca)TiO3 ceramics. Jpn. J. Appl. Phys. 27, 1162 (1988).CrossRefGoogle Scholar
12Šturm, S., Rečnik, A., Scheu, C., and Čeh, M.: Formation of Ruddlesden-Popper faults and polytype phases in SrO-doped SrTiO3. J. Mater. Res. 15, 2131 (2000).CrossRefGoogle Scholar
13Čeh, M. and Kolar, D.: Solubility of CaO in CaTiO3. J. Mater. Sci. 29, 6295 (1994).CrossRefGoogle Scholar
14Rečnik, A., Čeh, M., and Kolar, D.: Polytype induced exaggerated grain growth in ceramics. J. Eur. Ceram. Soc. 21, 2117 (2001).CrossRefGoogle Scholar
15Šturm, S., Rečnik, A., and Čeh, M.: Nucleation and growth of planar faults in SrO-excess SrTiO3. J. Eur. Ceram. Soc. 21, 2141 (2001).CrossRefGoogle Scholar
16Čeh, M., Gu, H., Müllejans, H., and Rečnik, A.: Analytical electron microscopy of planar faults in SrO-doped CaTiO3. J. Mater. Res. 12, 2438 (1997).CrossRefGoogle Scholar
17Suzuki, T., Nishi, Y., and Fujimoto, M.: Ruddlesden-Popper planar faults and nanotwins in heteroepitaxial nonstoichiometric barium titanate thin films. J. Am. Ceram. Soc. 83, 3185 (2000).CrossRefGoogle Scholar
18Iwazaki, Y., Suzuki, T., Sekiguchi, S., and Fujimoto, M.: Artificial SrTiO3/SrO superlattices by pulsed laser deposition. Jpn. J. Appl. Phys. 38, L1443 (1999).CrossRefGoogle Scholar
19Tian, W., Pan, X.Q., Haeni, J.H., and Scholm, D.G.: Transmissionelectron-microscopy study of n=1-5 Srn+1TinO3n+1 epitaxial thin films. J. Mater. Res. 16, 2013 (2001).CrossRefGoogle Scholar
20Fujimoto, M. and Suzuki, T.: High-resolution transmission electron microscopy and computer simulation of defect structures in electronic perovskite ceramics. J. Ceram. Soc. Jpn. 109, 722 (2001).CrossRefGoogle Scholar
21Suzuki, T. and Fujimoto, M.: First-principles structural stability study of nonstoichiometry-related planar defects in SrTiO3 and BaTiO3. J. Appl. Phys. 89, 5622 (2001).CrossRefGoogle Scholar
22Myhra, S., Rivière, J.C., Hawkins, K., and White, T.J.: Crystallographic changes in (CaxSr1-x)n+1TinO3n+1 layer perovskites: XPS and XAES investigations. J. Mater. Res. 7, 482 (1992).CrossRefGoogle Scholar
23Battle, P.D., Green, M.A., Laskey, N.S., Millburn, J.E., Murphy, L., Rosseinsky, M.J., Sullivan, S.P., and Vente, J.F.: Layered Ruddlesden-Popper manganese oxides: Synthesis and cation ordering. Chem. Mater. 9, 552 (1997).CrossRefGoogle Scholar
24Fujimoto, M., Suzuki, T., Nishi, Y., and Arai, K.: Calcium-ion selective site occupation at Ruddlesden-Popper-type faults and the resultant dielectric properties of A-site-excess strontium calcium titanate ceramics. J. Am. Ceram. Soc. 81, 33 (1998).CrossRefGoogle Scholar
25Saìnchez-Anduìjar, M. and Senpariì-Rodriìguez, M.A.: Cation ordering and electrical properties of the Ruddlesden-Popper Gd2-2xSr1+2XCo2O7 compounds (x=0 and 0.10). Z. Anorg. Allg. Chem. 633, 1890 (2007).CrossRefGoogle Scholar
26Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).Google Scholar
27Kirkland, E.J.: Advanced Computing in Electron Microscopy (Plenum Press, New York, 1998), pp. 63, 153.CrossRefGoogle Scholar
28Yamazaki, T., Watanabe, K., Recčnik, A.,CČ eh, M., Kawasaki, M., and Shiojiri, M.: Simulation of atomic-scale high-angle annular dark-field scanning transmission electron microscopy images. J. Electron Microsc. (Tokyo) 49, 753 (2000).Google Scholar
29Watanabe, K., Yamazaki, T., Hashimoto, I., and Shiojiri, M.: Atomicresolution annular dark-field STEM image calculations. Phys. Rev. B 64, 115432 (2001).CrossRefGoogle Scholar
30Ishizuka, K.: A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71 (2002).CrossRefGoogle Scholar
31Spence, J.C.H. and Koch, C.: On the measurement of dislocation core periods by nanodiffraction. Philos. Mag. B 81, 1701 (2001).CrossRefGoogle Scholar
32LeBeau, J.M., Findlay, S.D., Allen, L.J., and Stemmer, S.: Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).CrossRefGoogle ScholarPubMed
33Stadelmann, P.A.: EMS: A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
34Koch, C.: Quantitative TEM and STEM simulations. http://www. mf.mpg.de/en/organisation/hsm/koch/stem/index.html (accessed June 18, 2009).Google Scholar
35Recčnik, A., Močbus, G., and Šturm, S.: Image-warp: A real-space restoration method for high-resolution STEM images using quantitative HRTEM analysis. Ultramicroscopy 103, 285 (2005).CrossRefGoogle Scholar
36Šturm, S., Koch, C., CČ eh, M., Tchernychova, E., and Rühle, M.: Quantitative HRTEM and HAADF-STEM analysis of Ruddlesden- Popper planar faults in nonstroichiometric SrTiO3, edited by Čeh, M., Dražić, G., and Fidler, S. (7th MCM Symp. Proc., Portorozč, Slovenia, 2005), p. 59.Google Scholar