Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T04:00:18.310Z Has data issue: false hasContentIssue false

Atomic stacking and van-der-Waals bonding in GeTe–Sb2Te3 superlattices

Published online by Cambridge University Press:  27 September 2016

Jamo Momand*
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
Felix R.L. Lange
Affiliation:
I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen, Germany; and JARA-Institut Green IT, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52056 Aachen, Germany
Ruining Wang
Affiliation:
Department of Epitaxy, Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin, Germany
Jos E. Boschker
Affiliation:
Department of Epitaxy, Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin, Germany
Marcel A. Verheijen
Affiliation:
Eindhoven University of Technology, Department of Applied Physics, NL-5600 MB Eindhoven, The Netherlands
Raffaella Calarco
Affiliation:
Department of Epitaxy, Paul-Drude-Institut für Festkörperelektronik, 10117 Berlin, Germany
Matthias Wuttig
Affiliation:
I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen, Germany; and JARA-Institut Green IT, JARA-FIT, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52056 Aachen, Germany
Bart J. Kooi*
Affiliation:
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) e-mail: [email protected]
Get access

Abstract

GeTe–Sb2Te3 superlattices have attracted major interest in the field of phase-change memories due to their improved properties compared with their mixed counterparts. However, their crystal structure and resistance-switching mechanism are currently not clearly understood. In this work epitaxial GeTe–Sb2Te3 superlattices have been grown with different techniques and were thoroughly investigated to unravel the structure of their crystalline state with particular focus on atomic stacking and van-der-Waals bonding. It is found that, due to the bonding anisotropy of GeTe and Sb2Te3, the materials intermix to form van-der-Waals heterostructures of Sb2Te3 and stable GeSbTe. Moreover, it is found through annealing experiments that intermixing is stronger for higher temperatures. The resulting ground state structure contradicts the dominant ab-initio results in the literature, requiring revisions of the proposed switching mechanisms. Overall, these findings shed light on the bonding nature of GeTe–Sb2Te3 superlattices and open a way to the understanding of their functionality.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968).CrossRefGoogle Scholar
Wuttig, M. and Yamada, N.: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007).Google Scholar
Orava, J., Greer, A.L., Gholipour, B., Hewak, D.W., and Smith, C.E.: Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279 (2012).Google Scholar
Loke, D., Lee, T.H., Wang, W.J., Shi, L.P., Zhao, R., Yeo, Y.C., Chong, T.C., and Elliott, S.R.: Breaking the speed limits of phase-change memory. Science 336, 1566 (2012).Google Scholar
Raoux, S., Burr, G.W., Breitwisch, M.J., Rettner, C.T., Chen, Y.C., Shelby, R.M., Salinga, M., Krebs, D., Chen, S-H., Lung, H-L., and Lam, C.H.: Phase-change random access memory: A scalable technology. IBM J. Res. Dev. 52, 465 (2008).CrossRefGoogle Scholar
Burr, G.W., Breitwisch, M.J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lastras, L.A., Padilla, A., Rajendran, B., Raoux, S., and Shenoy, R.S.: Phase change memory technology. J. Vac. Sci. Technol., B 28, 223 (2010).Google Scholar
Hosseini, P., Wright, C.D., and Bhaskaran, H.: An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206 (2014).Google Scholar
Ríos, C., Stegmaier, M., Hosseini, P., Wang, D., Scherer, T., Wright, C.D., Bhaskaran, H., and Pernice, W.H.P.: Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725 (2015).Google Scholar
Ríos, C., Hosseini, P., Taylor, R.A., and Bhaskaran, H.: Color depth modulation and resolution in phase-change material nanodisplays. Adv. Mater. 28, 4720 (2016). doi: 10.1002/adma.201506238.Google Scholar
Siegrist, T., Jost, P., Volker, H., Woda, M., Merkelbach, P., Schlockermann, C., and Wuttig, M.: Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202 (2011).Google Scholar
Lacaita, A.L. and Redaelli, A.: The race of phase change memories to nanoscale storage and applications. Microelectron. Eng. 109, 351 (2013).Google Scholar
Boniardi, M., Redaelli, A., Cupeta, C., Pellizzer, F., Crespi, L., D'Arrigo, G., Lacaita, A.L., and Servalli, G.: Optimization metrics for phase change memory (PCM) cell architectures. In Electron Devices Meeting (IEDM), 2014 IEEE International, 2014; p. 29.1.1. doi: 10.1109/IEDM.2014.7047131.Google Scholar
Chong, T.C., Shi, L.P., Zhao, R., Tan, P.K., Li, J.M., Lee, H.K., Miao, X.S., Du, A.Y., and Tung, C.H.: Phase change random access memory cell with superlattice-like structure. Appl. Phys. Lett. 88, 122114 (2006).Google Scholar
Simpson, R.E., Fons, P., Kolobov, A.V., Fukaya, T., Krbal, M., Yagi, T., and Tominaga, J.: Interfacial phase-change memory. Nat. Nanotechnol. 6, 501 (2011).Google Scholar
Tominaga, J., Fons, P., Kolobov, A., Shima, T., Chong, T.C., Zhao, R., Lee, H.K., and Shi, L.: Role of Ge switch in phase transition: Approach using atomically controlled GeTe/Sb2Te3 superlattice. Jpn. J. Appl. Phys. 47, 5763 (2008).Google Scholar
Tominaga, J., Shima, T., Fons, P., Simpson, R., Kuwahara, M., and Kolobov, A.: What is the origin of activation energy in phase-change film? Jpn. J. Appl. Phys. 48, 03A053 (2009).Google Scholar
Momand, J., Wang, R., Boschker, J.E., Verheijen, M.A., Calarco, R., and Kooi, B.J.: Interface formation of two- and three-dimensionally bonded materials in the case of GeTe–Sb2Te3 superlattices. Nanoscale 7, 19136 (2015).Google Scholar
Casarin, B., Caretta, A., Momand, J., Kooi, B.J., Verheijen, M.A., Bragaglia, V., Calarco, R., Chukalina, M., Yu, X., Robertson, J., Lange, F.R.L., Wuttig, M., Redaelli, A., Varesi, E., Parmigiani, F., and Malvestuto, M.: Revisiting the local structure in Ge–Sb–Te based chalcogenide superlattices. Sci. Rep. 6, 22353 (2016).Google Scholar
Wang, R., Bragaglia, V., Boschker, J.E., and Calarco, R.: Intermixing during epitaxial growth of van der Waals bonded nominal GeTe/Sb2Te3 superlattices. Cryst. Growth Des. 16, 3596 (2016). doi: 10.1021/acs.cgd.5b01714.Google Scholar
Kooi, B.J. and Hosson, J.T.M.D.: Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of Ge x Sb2Te3+x (x = 1,2,3) phase change material. J. Appl. Phys. 92, 3584 (2002).Google Scholar
Matsunaga, T. and Yamada, N.: Structural investigation of GeSb2Te4: A high-speed phase-change material. Phys. Rev. B 69, 104111 (2004).Google Scholar
Matsunaga, T., Yamada, N., and Kubota, Y.: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems. Acta Crystallogr. B 60, 685 (2004).Google Scholar
Matsunaga, T., Kojima, R., Yamada, N., Kifune, K., Kubota, Y., and Takata, M.: Structural investigation of Ge3Sb2Te6, an intermetallic compound in the GeTe–Sb2Te3 homologous series. Appl. Phys. Lett. 90, 161919 (2007).Google Scholar
Goldak, J., Barrett, C.S., Innes, D., and Youdelis, W.: Structure of alpha GeTe. J. Chem. Phys. 44, 3323 (1966).Google Scholar
Anderson, T.L. and Krause, H.B.: Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds. Acta Crystallogr. B 30, 1307 (1974).Google Scholar
Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419 (2013).Google Scholar
Yamada, N. and Matsunaga, T.: Structure of laser-crystallized Ge2Sb2+x Te5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020 (2000).Google Scholar
Wuttig, M., Lüsebrink, D., Wamwangi, D., Wełnic, W., Gilleßen, M., and Dronskowski, R.: The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 6, 122 (2007).Google Scholar
Bragaglia, V., Arciprete, F., Zhang, W., Mio, A.M., Zallo, E., Perumal, K., Giussani, A., Cecchi, S., Boschker, J.E., Riechert, H., Privitera, S., Rimini, E., Mazzarello, R., and Calarco, R.: Metal—Insulator transition driven by vacancy ordering in GeSbTe phase change materials. Sci. Rep. 6, 23843 (2016).CrossRefGoogle ScholarPubMed
Zhang, W., Thiess, A., Zalden, P., Zeller, R., Dederichs, P.H., Raty, J-Y., Wuttig, M., Blügel, S., and Mazzarello, R.: Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952 (2012).Google Scholar
Jiang, Y., Sun, Y.Y., Chen, M., Wang, Y., Li, Z., Song, C., He, K., Wang, L., Chen, X., Xue, Q-K., Ma, X., and Zhang, S.B.: Fermi-Level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. Phys. Rev. Lett. 108, 66809 (2012).Google Scholar
Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., and Uruga, T.: Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703 (2004).Google Scholar
Tominaga, J., Kolobov, A.V., Fons, P., Nakano, T., and Murakami, S.: Ferroelectric order control of the Dirac-semimetal phase in GeTe–Sb2Te3 superlattices. Adv. Mater. Interfaces 1, 1300027 (2014).Google Scholar
Ohyanagi, T., Kitamura, M., Araidai, M., Kato, S., Takaura, N., and Shiraishi, K.: GeTe sequences in superlattice phase change memories and their electrical characteristics. Appl. Phys. Lett. 104, 252106 (2014).Google Scholar
Yu, X. and Robertson, J.: Modeling of switching mechanism in GeSbTe chalcogenide superlattices. Sci. Rep. 5, 12612 (2015).CrossRefGoogle ScholarPubMed
Boschker, J.E., Momand, J., Bragaglia, V., Wang, R., Perumal, K., Giussani, A., Kooi, B.J., Riechert, H., and Calarco, R.: Surface reconstruction-induced coincidence lattice formation between two-dimensionally bonded materials and a three-dimensionally bonded substrate. Nano Lett. 14, 3534 (2014).Google Scholar
Kolobov, A.V., Tominaga, J., Fons, P., and Uruga, T.: Local structure of crystallized GeTe films. Appl. Phys. Lett. 82, 382 (2003).Google Scholar
Tominaga, J., Kolobov, A.V., Fons, P.J., Wang, X., Saito, Y., Nakano, T., Hase, M., Murakami, S., Herfort, J., and Takagaki, Y.: Giant multiferroic effects in topological GeTe–Sb2Te3 superlattices. Sci. Technol. Adv. Mater. 16, 14402 (2015).Google Scholar
Saito, Y., Fons, P., Kolobov, A.V., and Tominaga, J.: Self-organized van der Waals epitaxy of layered chalcogenide structures. Phys. Status Solidi B 252, 2151 (2015). doi: 10.1002/pssb.201552335.Google Scholar
Koma, A.: Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201–202, 236 (1999).Google Scholar
Ross, U., Lotnyk, A., Thelander, E., and Rauschenbach, B.: Microstructure evolution in pulsed laser deposited epitaxial Ge–Sb–Te chalcogenide thin films. J. Alloys Compd. 676, 582 (2016).Google Scholar
Katmis, F., Calarco, R., Perumal, K., Rodenbach, P., Giussani, A., Hanke, M., Proessdorf, A., Trampert, A., Grosse, F., Shayduk, R., Campion, R., Braun, W., and Riechert, H.: Insight into the growth and control of single-crystal layers of Ge–Sb–Te phase-change material. Cryst. Growth Des. 11, 4606 (2011).CrossRefGoogle Scholar
Perumal, K.: Epitaxial Growth of Ge–Sb–Te Based Phase Change Materials (Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Berlin, 2013).Google Scholar
Venkatasubramanian, R.: Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091 (2000).Google Scholar
Caylor, J.C., Coonley, K., Stuart, J., Colpitts, T., and Venkatasubramanian, R.: Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 87, 23105 (2005).Google Scholar
Kolobov, A.V., Krbal, M., Fons, P., Tominaga, J., and Uruga, T.: Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nat. Chem. 3, 311 (2011).Google Scholar
Simpson, R.E., Fons, P., Kolobov, A.V., Krbal, M., and Tominaga, J.: Enhanced crystallization of GeTe from an Sb2Te3 template. Appl. Phys. Lett. 100, 21911 (2012).Google Scholar
Zhou, X., Kalikka, J., Ji, X., Wu, L., Song, Z., and Simpson, R.E.: Phase-change memory materials by design: A strain engineering approach. Adv. Mater. 28, 3007 (2016).Google Scholar
Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).Google Scholar