Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T07:01:21.528Z Has data issue: false hasContentIssue false

Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals

Published online by Cambridge University Press:  31 January 2011

K. Sangwal
Affiliation:
Institute of Physics, Technical University of Lublin, ul. Nadbystrzycka 38, 20–618 Lublin, Poland
P. Gorostiza
Affiliation:
Department of Physical Chemistry, University of Barcelona, Marti i Franques 1, 08028 Barcelona, Spain
J. Servat
Affiliation:
Department of Physical Chemistry, University of Barcelona, Marti i Franques 1, 08028 Barcelona, Spain
F. Sanz
Affiliation:
Department of Physical Chemistry, University of Barcelona, Marti i Franques 1, 08028 Barcelona, Spain
Get access

Abstract

The dependences of various nanoindentation parameters, such as depth of penetration d, indentation diameter a, deformation zone radius R, and height h of hills piled up around indents, on applied load were investigated for the initial (unrecovered) stage of indentation of the (100) cleavage faces of MgO crystals by square pyramidal Si tips for loads up to 10 μN using atomic force microscopy. The experimental data are analyzed using theories of elastic and plastic deformation. The results revealed that (i) a, R, and h linearly increase with d; (ii) the development of indentation size and deformation zone and the formation of hills are two different processes; (iii) the load dependence of nanohardness shows the normal indentation size effect (i.e., the hardness increases with a decrease in load); and (iv) there is an absence of plastic deformation involving the formation of slip lines around the indentations. It is found that Johnson's cavity model of elastic–plastic boundary satisfactorily explains the experimental data. The formation of hills around indentations is also consistent with a new model (i.e., indentation crater model) based on the concept of piling up of material of indentation cavity as hills.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mott, R.W., Microindentation Hardness Testing (Butterworths, London, 1956).Google Scholar
2.Sargent, P.M., in Microindentation Techniques in Materials Science and Engineering ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1985), p. 165.Google Scholar
3.Oliver, W.C., Hutchings, R., and Pethica, J.B., in Microindentation Techniques in Materials Science and Engineering ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1985), p. 90.CrossRefGoogle Scholar
4.Loubet, J.L., Georges, J.M., and Meille, G., in Microindentation Techniques in Materials Science and Engineering ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1985), p. 72.CrossRefGoogle Scholar
5.Bull, S.J., Page, T.F., and Yoffe, E.H., Philos. Mag. Lett. 59, 281 (1989).CrossRefGoogle Scholar
6.Li, H., Ghosh, A., Hau, Y.H., and Bradt, R.C., J. Mater. Res. 8, 1028 (1993).CrossRefGoogle Scholar
7.Li, H. and Bradt, R.C., J. Mater. Sci. 28, 917 (1993).CrossRefGoogle Scholar
8.Li, H., Han, Y.H., and Bradt, R.C., J. Mater. Sci. 29, 5641 (1994).CrossRefGoogle Scholar
9.Sangwal, K., J. Mater. Sci. 24, 1128 (1989).CrossRefGoogle Scholar
10.Sangwal, K., Mater. Chem. & Phys. (in press).Google Scholar
11.Ma, Q. and Clarke, D.R., J. Mater. Res. 10, 853 (1995).CrossRefGoogle Scholar
12.Ullner, Ch. and Höhne, L., Phys. Status Solidi A 129, 167 (1992).CrossRefGoogle Scholar
13.Boyarskaya, Yu. S., Grabko, D.Z., and Purich, E.I., J. Mater. Sci. 14, 737 (1979).CrossRefGoogle Scholar
14.Guille, J. and Sieskind, M., J. Mater. Sci. 26, 899 (1991).CrossRefGoogle Scholar
15.Pharr, G.M., Oliver, W.C., and Harding, D.S., J. Mater. Res. 6, 1129 (1991).CrossRefGoogle Scholar
16.Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
17.Harvey, S.E., Huang, H., Venkataraman, S.K., and Gerberich, W.W., J. Mater. Res. 8, 1291 (1993).CrossRefGoogle Scholar
18.Zielinski, W., Huang, H., and Gerberich, W.W., J. Mater. Res. 8, 1300 (1993).CrossRefGoogle Scholar
19.Lilleodden, E.T., Bonin, W., Nelson, J., Wyrobek, J.T., and Gerberich, W.W., J. Mater. Res. 10, 2162 (1995).CrossRefGoogle Scholar
20.Weppelmann, E.R., Field, J.S., and Swain, M.V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
21.Gilman, J.J., J. Mater. Res. 7, 535 (1992).CrossRefGoogle Scholar
22.Berzina, I.G., Berman, I.B., and Savintsev, P.A., Kristallografiya 9, 483 (1965).Google Scholar
23.Bhatt, V.P., Patel, R.M., and Desai, C.F., Cryst. Res. Technol. 18, 1173 (1983).CrossRefGoogle Scholar
24.Sangwal, K. and Arora, S.K., J. Mater. Sci. 13, 1977 (1978).CrossRefGoogle Scholar
25.Sangwal, K. and Arora, S.K., J. Phys. D: Appl. Phys. 12, 645 (1979).CrossRefGoogle Scholar
26.Brookes, C.A., Burnand, R.P., and Morgan, J.E., J. Mater. Sci. 10, 2171 (1975).CrossRefGoogle Scholar
27.Meyer, E. and Heinzelmann, H., in Scanning Tunneling Microscopy II, edited by Wiesendanger, R., and Gunlherodt, H-J. (Springer-Verlag, Heidelberg, Germany, 1992), p. 99.CrossRefGoogle Scholar
28.Kittel, C., Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976), Chap. 4.Google Scholar
29.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, United Kingdom, 1951).Google Scholar
30.Tabor, D., in Microindentation Techniques in Materials Science and Engineering ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (ASTM, Philadelphia, PA, 1985), p. 129.CrossRefGoogle Scholar
31.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985).CrossRefGoogle Scholar
32.Stablein, P.J., J. Appl. Phys. 34, 1867 (1963).CrossRefGoogle Scholar
33.Hammond, B.L. and Armstrong, R.W., Philos. Mag. 57, 41 (1988).Google Scholar
34.Hays, C. and Kendall, E.G., Metallurgy 6, 275 (1973).Google Scholar
35.Stelmashenko, N.A., Walls, M.G., Brown, L.M., and Milman, Yu. V., Acta Metall. Mater. 41, 2855 (1993).CrossRefGoogle Scholar
36.Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., Acta Metall. Mater. 42, 475 (1994).CrossRefGoogle Scholar
37.Westbrook, J.H., Proc. Am. Soc. Testing Mater. 57, 873 (1957).Google Scholar
38.Sangwal, K., Gorostiza, P., and Sanz, F., Surf. Sci. (in press).Google Scholar
39.Gane, N., Proc. R. Soc. London A317, 367 (1970).Google Scholar
40.Gerk, A., J. Mater. Sci. 12, 735 (1977).CrossRefGoogle Scholar
41.Gil Sevillano, J., in Plastic Deformation and Fracture of Materials, edited by Mughrabi, H. (VCH, Weinheim, Germany, 1993), p. 19.Google Scholar