Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T00:32:17.086Z Has data issue: false hasContentIssue false

Atomic diffusion mediated by intrinsic point defects in GaAs and AlxGa1−xAs–GaAs superlattices

Published online by Cambridge University Press:  31 January 2011

Hidehiko Iguchi
Affiliation:
Canon Inc. Research Center, 5-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa-ken 243-01, Japan
Get access

Abstract

Point-defect-mediated atomic diffusion in GaAs and AlxGa1−xAs–GaAs superlattices is examined thermodynamically by focusing on activation enthalpy of diffusion. Through a review of available experimental results of impurity diffusion of Si, Zn, and Be, their diffusion phenomena are discussed by taking the characteristics of column-III-site-related point defect, such as Ga vacancy and arsenic-antisite, into consideration. It is suggested that Zn and Be diffusion should be mediated by As-antisite defects. On the other hand, Si diffusion is mediated by either Ga vacancy or As-antisite, depending on the growth method of materials and diffusion conditions. It is argued that As-antisite should be a mediator of diffusion in As-antisite-rich materials and with using As-rich diffusion source under p-type conditions. Cation self-diffusion or interdiffusion is also discussed in the same manner. Impurity-enhanced layer-disordering phenomena are examined by considering the reduction of defect energy of Ga vacancy and As antisite under n-type and p-type conditions, respectively. Beryllium enhanced and suppressed interdiffusion (cation self-diffusion) in MBE-grown AlxGa1−xAs–GaAs superlattices are interpreted in view of point-defect-mediated cation diffusion on the basis of the Fermi-energy dependence of point defect. In order to explain the phenomena, crystal-growth methods and surface-localized point defects which is responsible for Fermi-level stabilization are taken into consideration.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Laidig, W. D., Holonyak, N. Jr, Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P.D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).CrossRefGoogle Scholar
2.Rupprecht, H. and LeMay, C. Z., J. Appl. Phys. 35, 1970 (1964).CrossRefGoogle Scholar
3.Goldstein, B., Phys. Rev. 118, 1024 (1960).CrossRefGoogle Scholar
4.Kawabe, M., Shimizu, N., Hasegawa, F., and Nannichi, Y., Appl. Phys. Lett. 46, 849 (1985).CrossRefGoogle Scholar
5.Devine, R.L.S., Foxon, C.T., Joyce, B.A., Clegg, J.B., and Gowers, J.P., Appl. Phys. A 44, 195 (1987).CrossRefGoogle Scholar
6.Kamata, N., Kobayashi, K., Endo, K., Suzuki, T., and Misu, A., Jpn. J. Appl. Phys. 26, 1092 (1987).CrossRefGoogle Scholar
7.Kobayashi, J., Nakajima, M., Fukunaga, T., Takamori, T., Ishida, K., Nakashima, H., and Ishida, K., Jpn. J. Appl. Phys. 25, L736 (1986).CrossRefGoogle Scholar
8.Ishida, K., Takamori, T., Matsui, K., Fukunaga, T., Morita, T., Miyauchi, E., Hashimoto, H., and Nakashima, H., Jpn. J. Appl. Phys. 25, L783 (1986).CrossRefGoogle Scholar
9.Martin, G. M., Farges, J. P., Jacob, G., Hallais, J. P., and Poiblaud, G., J. Appl. Phys. 51, 2840 (1980).CrossRefGoogle Scholar
10.von Bardeleben, H. J., Stievenard, D., Bourgoin, J. C., and Huber, A., Appl. Phys. Lett. 47, 970 (1985).CrossRefGoogle Scholar
11.Baraff, G. A. and Schlüter, M., Phys. Rev. B 35, 6154 (1987).CrossRefGoogle Scholar
12.Meyer, B. K., Hofmann, D. M., Niklas, J. R., and Spaeth, J-M., Phys. Rev. B 36, 1332 (1987).CrossRefGoogle Scholar
13.Dabrowski, J. and Scheffler, M., Phys. Rev. Lett. 60, 2183 (1988).CrossRefGoogle Scholar
14.Bourgoin, J. C., von Bardeleben, H. J., and Stievenard, D., J. Appl. Phys. 64, R65 (1988).CrossRefGoogle Scholar
15.Swalin, R. A., J. Appl. Phys. 29, 670 (1958).CrossRefGoogle Scholar
16.Kittel, C., Introduction to Solid State Physics, 5th ed. (John Wiley & Sons, New York, 1976), p. 100.Google Scholar
17.Waser, J. and Pauling, L., J. Chem. Phys. 18, 747 (1950).CrossRefGoogle Scholar
18.Baraff, G. A. and Schlüter, M., Phys. Rev. Lett. 55, 1327 (1985).CrossRefGoogle Scholar
19.Greiner, M. E. and Gibbons, J. F., Appl. Phys. Lett. 44, 750 (1984).CrossRefGoogle Scholar
20.Greiner, M.E. and Gibbons, J.F., J. Appl. Phys. 57, 5181 (1985).CrossRefGoogle Scholar
21.Deppe, D. G., Holonyak, N. Jr, Kish, F. A., and Baker, J. E., Appl. Phys. Lett. 50, 998 (1987).CrossRefGoogle Scholar
22.Deppe, D. G., Holonyak, N. Jr, and Baker, J. E., Appl. Phys. Lett. 52, 129 (1988).CrossRefGoogle Scholar
23.Yu, S., Gösele, U.M., and Tan, T.Y., J. Appl. Phys. 66, 2952 (1989).CrossRefGoogle Scholar
24.Kavanagh, K. L., Mayer, J. W., Magee, C. W., Sheets, J., Tong, J., and Woodall, J. M., Appl. Phys. Lett. 47, 1208 (1985).CrossRefGoogle Scholar
25.Omura, E., Wu, X. S., Vawter, G. A., Coldren, L., Hu, E., and Merz, J. L., Electron. Lett. 22, 496 (1986).CrossRefGoogle Scholar
26.Vawter, G.A., Omura, E., Wu, X. S., Merz, J.L., Coldren, L., and Hu, E., J. Appl. Phys. 63, 5541 (1988).CrossRefGoogle Scholar
27.Schubert, E. F., Stark, J. B., Chiu, T. H. K., and Tell, B., Appl. Phys. Lett. 53, 293 (1988).CrossRefGoogle Scholar
28.Iguchi, H., Jpn. J. Appl. Phys. 28, L2115 (1989).CrossRefGoogle Scholar
29.Schubert, E.F., Tu, C.W., Kopf, R.F., Kuo, J.M., and Lunardi, L.M., Appl. Phys. Lett. 54, 2592 (1989).CrossRefGoogle Scholar
30.von Bardeleben, H. J., Stievenard, D., Deresmes, D., Huber, A., and Bourgoin, J. C., Phys. Rev. B 34, 7192 (1986).CrossRefGoogle Scholar
31.Lagowski, J., Gatos, H.C., Kang, C.H., Skowronski, M., Ko, K. Y., and Lin, D. G., Appl. Phys. Lett. 49, 892 (1986).CrossRefGoogle Scholar
32.Cunningham, J. E., Chiu, T. H., Tell, B., and Jan, W., J. Vac. Sci. Technol. B 8, 157 (1990).CrossRefGoogle Scholar
33.Miller, M.D., Olsen, G.H., and Ettenberg, M., Appl. Phys. Lett. 31, 538 (1977).CrossRefGoogle Scholar
34.Watanabe, M. O., Tanaka, A., Nakanishi, T., and Zohta, Y., Jpn. J. Appl. Phys. 20, L429 (1981).CrossRefGoogle Scholar
35.Lang, D.V., Cho, A.Y., Gossard, A.C., Ilegems, M., and Wiegmann, W., J. Appl. Phys. 47, 2558 (1976).CrossRefGoogle Scholar
36.Neave, J.H., Blood, P., and Joyce, B. A., Appl. Phys. Lett. 36, 311 (1980).CrossRefGoogle Scholar
37.Blood, P. and Harris, J.J., J. Appl. Phys. 56, 993 (1984).CrossRefGoogle Scholar
38.Dejule, R.Y., Haase, M.A., Stillman, G.E., Palmateer, S.C., and Hwang, J. C. M., J. Appl. Phys. 57, 5287 (1985).CrossRefGoogle Scholar
39.Xin, S. H., Schaff, W. J., Wood, C. E. C., and Eastman, L. F., Appl. Phys. Lett. 41, 742 (1982).CrossRefGoogle Scholar
40.Kitagawa, A., Usami, A., Wada, T., Tokuda, Y., and Kano, H., J. Appl. Phys. 61, 1215 (1987).CrossRefGoogle Scholar
41.Horikoshi, Y., Kawashima, M., and Yamaguchi, H., Jpn. J. Appl. Phys. 25, L868 (1986).CrossRefGoogle Scholar
42.Matsumoto, Y., Jpn. J. Appl. Phys. 22, 829 (1983).CrossRefGoogle Scholar
43.Casey, H. C. Jr, and Panish, M. B., Trans. Metall. Soc. AIME 242, 406 (1968).Google Scholar
44.Herzog, A. H., Solid State Electron. 9, 721 (1966).CrossRefGoogle Scholar
45.Lee, J. W. and Laidig, W. D., J. Electron. Mater. 13, 147 (1984).CrossRefGoogle Scholar
46.Frank, F. C. and Turnbull, D., Phys. Rev. 104, 617 (1956).CrossRefGoogle Scholar
47.Longini, R. L., Solid State Electron. 5, 127 (1962).CrossRefGoogle Scholar
48.Gösele, U. and Morehead, F., J. Appl. Phys. 52, 4617 (1981).CrossRefGoogle Scholar
49.Weisberg, L.E. and Blanc, J., Phys. Rev. 131, 1548 (1963).CrossRefGoogle Scholar
50.Miller, J. N., Collins, D. M., and Moli, N. J., Appl. Phys. Lett. 46, 960 (1985).CrossRefGoogle Scholar
51.Enquist, P., Wicks, G.W., Eastman, L.F., and Hitzman, C., J. Appl. Phys. 58, 4130 (1985).CrossRefGoogle Scholar
52.Pao, Y-C., Hierl, T., and Cooper, T., J. Appl. Phys. 60, 201 (1986).CrossRefGoogle Scholar
53.Devine, R. L. S., Foxon, C. T., Joyce, B. A., Clegg, J. B., and Gowers, J. P., Appl. Phys. A 44, 195 (1987).CrossRefGoogle Scholar
54.Deal, M. D. and Robinson, H. G., Appl. Phys. Lett. 55, 1990 (1989).CrossRefGoogle Scholar
55.Schubert, E.F., Kuo, J.M., Kopf, R.F., Luftman, H.S., Hopkins, L.C., and Sauer, N.J., J. Appl. Phys. 67, 1969 (1990).CrossRefGoogle Scholar
56.Tejwani, M. J., Kanber, H., Paine, B. M., and Whelan, J. M., Appl. Phys. Lett. 53, 2411 (1988).CrossRefGoogle Scholar
57.Goldstein, B., Phys. Rev. 121, 1305 (1961).CrossRefGoogle Scholar
58.Cibert, J., Petroff, P. M., Werder, D. J., Pearton, S. J., Gossard, A. C., and English, J. H., Appl. Phys. Lett. 49, 223 (1986).CrossRefGoogle Scholar
59.Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).CrossRefGoogle Scholar
60.Lee, J-C., Schlesinger, T. E., and Kuech, T. F., J. Vac. Sci. Technol. B 5, 1187 (1987).CrossRefGoogle Scholar
61.Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).CrossRefGoogle Scholar
62.Mei, P., Schwarz, S.A., Venkatesan, T., Schwartz, C.L., and Colas, E., J. Appl. Phys. 65, 2165 (1989).CrossRefGoogle Scholar
63.Ilegems, M., J. Appl. Phys. 48, 1278 (1977).CrossRefGoogle Scholar
64.Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y., and Lindau, I., J. Vac. Sci. Technol. 16, 1422 (1979).CrossRefGoogle Scholar
65.Spicer, W.E., Lindau, I., Skeath, P., Su, C.Y., and Chye, P., Phys. Rev. Lett. 44, 420 (1980).CrossRefGoogle Scholar
66.Spicer, W.E., Lindau, I., Skeath, P., and Su, C.Y., J. Vac. Sci. Technol. 17, 1019 (1980).CrossRefGoogle Scholar
67.Allen, R. E. and Dow, J. D., J. Vac. Sci. Technol. 19, 383 (1981).CrossRefGoogle Scholar
68.Dow, J. D. and Allen, R. E., J. Vac. Sci. Technol. 20, 659 (1982).CrossRefGoogle Scholar
69.Allen, R. E., Humphreys, T. J., Dow, J. D., and Sankey, O. F., J. Vac. Sci. Technol. B 2, 449 (1984).CrossRefGoogle Scholar
70.Weber, E. R., Ennen, H., Kaufmann, U., Windscheif, J., Schneider, J., and Wosinski, T., J. Appl. Phys. 53, 6140 (1982).CrossRefGoogle Scholar
71.Spicer, W. E., Liliental-Weber, Z., Weber, E., Newman, N., Kendelewicz, T., Cao, R., McCants, C., Mahowald, P., Miyao, K., and Lindau, I., J. Vac. Sci. Technol. B 6, 1245 (1988).CrossRefGoogle Scholar
72.Brillson, L. J., Viturro, R. E., Mailhiot, C., Shaw, J. L., Tache, N., McKinley, J., Margaritondo, G., Woodall, J.M., Kirchner, P.D., Pettit, G. D., and Wright, S. L., J. Vac. Sci. Technol. B 6, 1263 (1988).CrossRefGoogle Scholar