Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T05:07:36.307Z Has data issue: false hasContentIssue false

Atmospheric Pressure Chemical Vapor Deposition Growth Window for Undoped Gallium Antimonide

Published online by Cambridge University Press:  31 January 2011

A. Subekti
Affiliation:
Semiconductor Science and Technology Laboratories, Macquarie University, North Ryde, New South Wales, 2109, Australia
E. M. Goldys
Affiliation:
Semiconductor Science and Technology Laboratories, Macquarie University, North Ryde, New South Wales, 2109, Australia
Melissa J. Paterson
Affiliation:
Semiconductor Science and Technology Laboratories, Macquarie University, North Ryde, New South Wales, 2109, Australia
K. Drozdowicz-Tomsia
Affiliation:
Semiconductor Science and Technology Laboratories, Macquarie University, North Ryde, New South Wales, 2109, Australia
T. L. Tansley
Affiliation:
Semiconductor Science and Technology Laboratories, Macquarie University, North Ryde, New South Wales, 2109, Australia
Get access

Abstract

Metalorganic chemical vapor deposition (MOCVD) GaSb growth using trimethylgallium and trimethylantimony as a function of substrate temperature and V/III ratio was examined. These parameters were found to have a significant effect on the growth rate and surface morphology of the GaSb films. A phase diagram is used to interpret the effect of these growth parameters on the GaSb film growth. The region of single-phase growth was found to be narrow, falling between 540 and 560 °C. The optimum growth conditions for the MOCVD growth of GaSb have been determined for a TMGa flow rate of 20 sccm and a carrier gas flow of 8 l/min. The optimum substrate temperature and V/III ratio were found to be 540 °C and 0.72, respectively. In these conditions the lowest hole concentration of 5 × 1016 cm-3 and the highest room temperature mobility of 500 cm2 V-1 s-1 were achieved, accompanied by a steep, well-resolved band edge at 0.72 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baranov, A. N., Voronina, T. I., Zimogorova, N. S., Kauskaya, L. M., and Yakovlev, Y. P., Sov. Phys. Semicond. 19, 1676 (1985).Google Scholar
2.Yano, M., Suzuki, Y., Ishii, T., Matsushima, Y., and Kimata, M., Jpn. J. Appl. Phys. 17, 2091 (1978).CrossRefGoogle Scholar
3.Haywood, S. K., Mason, N. J., and Walker, P. J., J. Cryst. Growth 93, 56 (1988).CrossRefGoogle Scholar
4.Haywood, S. K., Henriques, A. B., Mason, N. J., Nicholas, R. J., and Walker, P. J., Semicond. Sci. Technol. 3, 315 (1988).CrossRefGoogle Scholar
5.Koljonen, T., Sopanen, M., Lipsanen, H., and Tuomi, T., J. Electron. Mater. 24, 1691 (1995).CrossRefGoogle Scholar
6.Chidley, E. T. R., Haywood, S. K., Henriques, A. B., Mason, N. J., Nicholas, R. J., and Walker, P. J., Semicond. Sci. Technol. 6, 45 (1991).CrossRefGoogle Scholar
7.Pascal, F., Delannoy, F., Bougnot, J., Gouskov, L., Bougnot, G., Grosse, P., and Kaoukab, J., J. Electron. Mater. 19, 187 (1990).CrossRefGoogle Scholar
8.Graham, R.M., Jones, A.C., Mason, N. J., Rushworth, S., Salesse, A., Seong, T-Y., Booker, G., Smith, L., and Walker, P. J., Semicond. Sci. Technol. 8, 1797 (1993).CrossRefGoogle Scholar
9.Yuang, F. S., Su, Y. K., and Li, N. Y., Jpn. J. Appl. Phys. 30, 207 (1991).Google Scholar
10.Yuang, F. S., Su, Y. K., Li, N. Y., and Gan, K. J., J. Appl. Phys. 68, 6383 (1990).Google Scholar
11.Su, Y. K. and Chen, S. M., J. Appl. Phys. 12, 8349 (1993).CrossRefGoogle Scholar
12.Chen, S. M. and Su, Y. K., J. Appl. Phys. 74, 2892 (1993).CrossRefGoogle Scholar
13.Cherng, M. J., Jen, H. R., Larsen, C. A., and Stringfellow, G. B., J. Cryst. Growth 77, 408 (1986).CrossRefGoogle Scholar
14.Cheng Lu, D., Liu, X., Wang, D., and Lin, L., J. Cryst. Growth 124, 383 (1992).Google Scholar
15.Honig, R.E. and Kramer, D.A., RCA Review 30, 285 (1969).Google Scholar
16.Bozek, R., Babinski, A., Baranowski, J. M., Stepniewski, R., Klusek, Z., Olejniczak, W., Starowieyski, K., and Wrobel, J., Acta Physica Polonica 88, 974 (1995).CrossRefGoogle Scholar
17.Auvergne, D., Camassel, J., and Mathieu, H., Phys. Rev. B 11, 2251 (1975).CrossRefGoogle Scholar
18.Larsen, C. A., Buchan, N. I., Li, H. S., and Stringfellow, G. B., J. Cryst. Growth 102, 103 (1990).CrossRefGoogle Scholar
19.Subekti, A., Goldys, E. M., Paterson, M. J., and Tansley, T. L., unpublished.Google Scholar